An assessment of inland fisheries in South Africa using fisheries-dependent and fisheries-independent data sources
- Authors: McCafferty, James Ross
- Date: 2012
- Subjects: Fisheries -- South Africa , Fishery management -- South Africa , Fisheries -- Economic aspects -- South Africa , Food security -- South Africa , Poverty -- South Africa , Economic development -- South Africa , Fishing -- South Africa , Fisheries -- Catch effort -- South Africa , Fish stock assessment -- South Africa , Fish populations -- South Africa , Linear models (Statistics)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5229 , http://hdl.handle.net/10962/d1005072 , Fisheries -- South Africa , Fishery management -- South Africa , Fisheries -- Economic aspects -- South Africa , Food security -- South Africa , Poverty -- South Africa , Economic development -- South Africa , Fishing -- South Africa , Fisheries -- Catch effort -- South Africa , Fish stock assessment -- South Africa , Fish populations -- South Africa , Linear models (Statistics)
- Description: The role of inland fisheries as contributors to local and national economies in developing African countries is well documented. In South Africa, there is increasing interest in inland fisheries as vehicles for achieving national policy objectives including food security, livelihoods provision, poverty alleviation and economic development but there is surprisingly little literature on the history, current status, and potential of inland fishery resources. This lack of knowledge constrains the development of management strategies for ensuring the biological sustainability of these resources and the economic and social sustainability of the people that are dependent on them. In order to contribute to the knowledge base of inland fisheries in South Africa this thesis: (1) presents an exhaustive review of the available literature on inland fisheries in South Africa; (2) describes the organisation of recreational anglers (the primary users of the resource); (3) compiles recreational angling catch records and scientific gill net survey data, and assesses the applicability of these data for providing estimates of fish abundance (catch-per-unit effort [CPUE]); and finally, (4) determines the potential for models of fish abundance using morphometric, edaphic, and climatic factors. The literature review highlighted the data-poor nature of South African inland fisheries. In particular information on harvest rates was lacking. A lack of knowledge regarding different inland fishery sectors, governance systems, and potential user conflicts was also found. Recreational anglers were identified as the dominant user group and catch data from this sector were identified as potential sources of fish abundance and harvest information. Formal freshwater recreational angling in South Africa is a highly organised, multi-faceted activity which is based primarily on angling for non-native species, particularly common carp Cyprinus carpio and largemouth bass Micropterus salmoides. Bank anglers constituted the largest number of formal participants (5 309 anglers affiliated to formal angling organisations) followed by bass anglers (1 184 anglers affiliated to formal angling organisations). The highly structured nature of organised recreational angling and dominant utilisation of inland fisheries resources by this sector illustrated not only the vested interest of anglers in the management and development of inland fisheries but also the role that anglers may play in future decision-making and monitoring through the dissemination of catch data from organised angling events. Generalised linear models (GLMs) and generalised additive models (GAMs) were used to standardise CPUE estimates from bass- and bank angling catch records, which provided the most suitable data, and to determine environmental variables which most influenced capture probabilities and CPUE. Capture probabilities and CPUE for bass were influenced primarily by altitude and conductivity and multiple regression analysis revealed that predictive models incorporating altitude, conductivity, surface area and capacity explained significant (p<0.05) amounts of variability in CPUE (53%), probability of capture (49%) and probability of limit bag (74%). Bank angling CPUE was influenced by conductivity, surface area and rainfall although an insignificant (p>0.05) amount of variability (63%) was explained by a predictive model incorporating these variables as investigations were constrained by small sample sizes and aggregated catch information. Scientific survey data provided multi-species information and highlighted the high proportion of non-native fish species in Eastern Cape impoundments. Gillnet catches were influenced primarily by species composition and were less subject to fluctuations induced by environmental factors. Overall standardised gillnet CPUE was influenced by surface area, conductivity and age of impoundment. Although the model fit was not significant at the p<0.05 level, 23% of the variability in the data was explained by a predictive model incorporating these variables. The presence of species which could be effectively targeted by gillnets was hypothesised to represent the most important factor influencing catch rates. Investigation of factors influencing CPUE in impoundments dominated by Clarias gariepinus and native cyprinids indicated that warmer, younger impoundments and smaller, colder impoundments produced higher catches of C. gariepinus and native cyprinids respectively. A predictive model for C. gariepinus abundance explained a significant amount of variability (77%) in CPUE although the small sample size of impoundments suggests that predictions from this model may not be robust. CPUE of native cyprinids was influenced primarily by the presence of Labeo umbratus and constrained by small sample size of impoundments and the model did not adequately explain the variability in the data (r² = 0.31, p>0.05). These results indicate that angling catch- and scientific survey data can be useful in providing predictions of fish abundance that are biologically realistic. However, more data over a greater spatial scale would allow for more robust predictions of catch rates. This could be achieved through increased monitoring of existing resource users, the creation of a centralised database for catch records from angling competitions, and increased scientific surveys of South African impoundments conducted by a dedicated governmental function.
- Full Text:
- Date Issued: 2012
- Authors: McCafferty, James Ross
- Date: 2012
- Subjects: Fisheries -- South Africa , Fishery management -- South Africa , Fisheries -- Economic aspects -- South Africa , Food security -- South Africa , Poverty -- South Africa , Economic development -- South Africa , Fishing -- South Africa , Fisheries -- Catch effort -- South Africa , Fish stock assessment -- South Africa , Fish populations -- South Africa , Linear models (Statistics)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5229 , http://hdl.handle.net/10962/d1005072 , Fisheries -- South Africa , Fishery management -- South Africa , Fisheries -- Economic aspects -- South Africa , Food security -- South Africa , Poverty -- South Africa , Economic development -- South Africa , Fishing -- South Africa , Fisheries -- Catch effort -- South Africa , Fish stock assessment -- South Africa , Fish populations -- South Africa , Linear models (Statistics)
- Description: The role of inland fisheries as contributors to local and national economies in developing African countries is well documented. In South Africa, there is increasing interest in inland fisheries as vehicles for achieving national policy objectives including food security, livelihoods provision, poverty alleviation and economic development but there is surprisingly little literature on the history, current status, and potential of inland fishery resources. This lack of knowledge constrains the development of management strategies for ensuring the biological sustainability of these resources and the economic and social sustainability of the people that are dependent on them. In order to contribute to the knowledge base of inland fisheries in South Africa this thesis: (1) presents an exhaustive review of the available literature on inland fisheries in South Africa; (2) describes the organisation of recreational anglers (the primary users of the resource); (3) compiles recreational angling catch records and scientific gill net survey data, and assesses the applicability of these data for providing estimates of fish abundance (catch-per-unit effort [CPUE]); and finally, (4) determines the potential for models of fish abundance using morphometric, edaphic, and climatic factors. The literature review highlighted the data-poor nature of South African inland fisheries. In particular information on harvest rates was lacking. A lack of knowledge regarding different inland fishery sectors, governance systems, and potential user conflicts was also found. Recreational anglers were identified as the dominant user group and catch data from this sector were identified as potential sources of fish abundance and harvest information. Formal freshwater recreational angling in South Africa is a highly organised, multi-faceted activity which is based primarily on angling for non-native species, particularly common carp Cyprinus carpio and largemouth bass Micropterus salmoides. Bank anglers constituted the largest number of formal participants (5 309 anglers affiliated to formal angling organisations) followed by bass anglers (1 184 anglers affiliated to formal angling organisations). The highly structured nature of organised recreational angling and dominant utilisation of inland fisheries resources by this sector illustrated not only the vested interest of anglers in the management and development of inland fisheries but also the role that anglers may play in future decision-making and monitoring through the dissemination of catch data from organised angling events. Generalised linear models (GLMs) and generalised additive models (GAMs) were used to standardise CPUE estimates from bass- and bank angling catch records, which provided the most suitable data, and to determine environmental variables which most influenced capture probabilities and CPUE. Capture probabilities and CPUE for bass were influenced primarily by altitude and conductivity and multiple regression analysis revealed that predictive models incorporating altitude, conductivity, surface area and capacity explained significant (p<0.05) amounts of variability in CPUE (53%), probability of capture (49%) and probability of limit bag (74%). Bank angling CPUE was influenced by conductivity, surface area and rainfall although an insignificant (p>0.05) amount of variability (63%) was explained by a predictive model incorporating these variables as investigations were constrained by small sample sizes and aggregated catch information. Scientific survey data provided multi-species information and highlighted the high proportion of non-native fish species in Eastern Cape impoundments. Gillnet catches were influenced primarily by species composition and were less subject to fluctuations induced by environmental factors. Overall standardised gillnet CPUE was influenced by surface area, conductivity and age of impoundment. Although the model fit was not significant at the p<0.05 level, 23% of the variability in the data was explained by a predictive model incorporating these variables. The presence of species which could be effectively targeted by gillnets was hypothesised to represent the most important factor influencing catch rates. Investigation of factors influencing CPUE in impoundments dominated by Clarias gariepinus and native cyprinids indicated that warmer, younger impoundments and smaller, colder impoundments produced higher catches of C. gariepinus and native cyprinids respectively. A predictive model for C. gariepinus abundance explained a significant amount of variability (77%) in CPUE although the small sample size of impoundments suggests that predictions from this model may not be robust. CPUE of native cyprinids was influenced primarily by the presence of Labeo umbratus and constrained by small sample size of impoundments and the model did not adequately explain the variability in the data (r² = 0.31, p>0.05). These results indicate that angling catch- and scientific survey data can be useful in providing predictions of fish abundance that are biologically realistic. However, more data over a greater spatial scale would allow for more robust predictions of catch rates. This could be achieved through increased monitoring of existing resource users, the creation of a centralised database for catch records from angling competitions, and increased scientific surveys of South African impoundments conducted by a dedicated governmental function.
- Full Text:
- Date Issued: 2012
Movement patterns, stock delineation and conservation of an overexploited fishery species, Lithognathus Lithognathus (Pisces: Sparidae)
- Authors: Bennett, Rhett Hamilton
- Date: 2012
- Subjects: Reef fishes -- Behavior , Endangered species -- South Africa , Fish stock assessment -- South Africa , Fishery management -- South Africa , Fish communities -- South Africa , Sparidae , Lithognathus , Lithognathus -- Growth
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5374 , http://hdl.handle.net/10962/d1015709
- Description: White steenbras Lithognathus lithognathus (Pisces: Sparidae) has been a major target species of numerous fisheries in South Africa, since the late 19th century. Historically, it contributed substantially to annual catches in commercial net fisheries, and became dominant in recreational shore catches in the latter half of the 20th century. However, overexploitation in both sectors resulted in severe declines in abundance. The ultimate collapse of the stock by the end of the last century, and the failure of traditional management measures to protect the species indicate that a new management approach for this species is necessary. The species was identified as a priority for research, management and conservation in a National Linefish Status Report. Despite knowledge on aspects of its biology and life history, little is known about juvenile habitat use patterns, home range dynamics and movement behaviour in estuaries. Similarly, the movement and migration of larger juveniles and adults in the marine environment are poorly understood. Furthermore, there is a complete lack of information on its genetic stock structure. Such information is essential for effective management of a fishery species. This thesis aimed to address the gaps in the understanding of white steenbras movement patterns and genetic stock structure, and provide an assessment of its current conservation status. The study adopted a multidisciplinary approach, incorporating a range of methods and drawing on available information, including published literature, unpublished reports and data from long-term monitoring programmes. Acoustic telemetry, conducted in a range of estuaries, showed high site fidelity, restricted area use, small home ranges relative to the size of the estuary, and a high level of residency within estuaries at the early juvenile life stage. Behaviour within estuaries was dominated by station-keeping, superimposed by a strong diel behaviour, presumably based on feeding and/or predator avoidance, with individuals entering the shallow littoral zone at night to feed, and seeking refuge in the deeper channel areas during the daytime. Conventional dart tagging and recapture data from four ongoing, long-term coastal fish tagging projects, spread throughout the distribution of this species, indicated high levels of residency in the surf zone at the late juvenile and sub-adult life stages. Consequently, juvenile and sub-adult white steenbras are vulnerable to localised depletion, although they can be effectively protected by suitably positioned estuarine protected areas (EPAs) and marine protected areas (MPAs), respectively. It has been hypothesized that adult white steenbras undertake large-scale coastal migrations between summer aggregation areas and winter spawning grounds. The scale of observed coastal movements was correlated with fish size (and age), with larger fish undertaking considerably longer-distance coastal movements than smaller individuals, supporting this hypothesis. Given the migratory behaviour of adults, and indications that limited spawning habitat exists, MPAs designed to protect white steenbras during the adult life stage should encompass all known spawning aggregation sites. The fishery is plagued by problems such as low compliance and low enforcement capacity, and alternative management measures, such as seasonal closure, need to be evaluated. Despite considerable conventional dart tagging effort around the coastline (5 782 fish tagged) with 292 recaptures there remains a lack of empirical evidence of fish migrating long distances (> 600 km) between aggregation and spawning areas. This uncertainty in the level of connectivity among coastal regions was addressed using mitochondrial DNA sequencing and genotyping of microsatellite repeat loci in the nuclear genome, which showed no evidence of major geographic barriers to gene flow in this species. Samples collected throughout the white steenbras core distribution showed high genetic diversity, low genetic differentiation and no evidence of isolation by distance or localised spawning. Although historically dominant in several fisheries, analysis of long-term commercial and recreational catch data for white steenbras indicated considerable declines and ultimately stock collapse. Improved catch-per-unit-effort in two large MPAs subsequent to closure confirmed that MPAs can be effective for the protection of white steenbras. However, the current MPA network encompasses a low proportion of sandy shoreline, for which white steenbras exhibits an affinity. Many MPAs do not prohibit recreational shore angling, which currently accounts for the greatest proportion of the total annual catch. Furthermore, EPAs within the juvenile distribution protect a negligible proportion of the total available surface area of estuaries – habitat on which white steenbras is wholly dependent. Despite some evidence of recent increases in abundance in estuaries and the surf zone in certain areas, white steenbras meets the criteria for “Endangered” on the IUCN Red List of Threatened Species, and for “Protected species” status on the National Environmental Management: Biodiversity Act of South Africa. The species requires improved management, with consideration for its life-history style, estuarine dependency, surf zone residency, predictable spawning migrations and its poor conservation status. The multidisciplinary approach provides valuable information towards an improved scientific basis for the management of white steenbras and a framework for research that can be adopted for other overexploited, estuarine-associated coastal fishery species.
- Full Text:
- Date Issued: 2012
- Authors: Bennett, Rhett Hamilton
- Date: 2012
- Subjects: Reef fishes -- Behavior , Endangered species -- South Africa , Fish stock assessment -- South Africa , Fishery management -- South Africa , Fish communities -- South Africa , Sparidae , Lithognathus , Lithognathus -- Growth
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5374 , http://hdl.handle.net/10962/d1015709
- Description: White steenbras Lithognathus lithognathus (Pisces: Sparidae) has been a major target species of numerous fisheries in South Africa, since the late 19th century. Historically, it contributed substantially to annual catches in commercial net fisheries, and became dominant in recreational shore catches in the latter half of the 20th century. However, overexploitation in both sectors resulted in severe declines in abundance. The ultimate collapse of the stock by the end of the last century, and the failure of traditional management measures to protect the species indicate that a new management approach for this species is necessary. The species was identified as a priority for research, management and conservation in a National Linefish Status Report. Despite knowledge on aspects of its biology and life history, little is known about juvenile habitat use patterns, home range dynamics and movement behaviour in estuaries. Similarly, the movement and migration of larger juveniles and adults in the marine environment are poorly understood. Furthermore, there is a complete lack of information on its genetic stock structure. Such information is essential for effective management of a fishery species. This thesis aimed to address the gaps in the understanding of white steenbras movement patterns and genetic stock structure, and provide an assessment of its current conservation status. The study adopted a multidisciplinary approach, incorporating a range of methods and drawing on available information, including published literature, unpublished reports and data from long-term monitoring programmes. Acoustic telemetry, conducted in a range of estuaries, showed high site fidelity, restricted area use, small home ranges relative to the size of the estuary, and a high level of residency within estuaries at the early juvenile life stage. Behaviour within estuaries was dominated by station-keeping, superimposed by a strong diel behaviour, presumably based on feeding and/or predator avoidance, with individuals entering the shallow littoral zone at night to feed, and seeking refuge in the deeper channel areas during the daytime. Conventional dart tagging and recapture data from four ongoing, long-term coastal fish tagging projects, spread throughout the distribution of this species, indicated high levels of residency in the surf zone at the late juvenile and sub-adult life stages. Consequently, juvenile and sub-adult white steenbras are vulnerable to localised depletion, although they can be effectively protected by suitably positioned estuarine protected areas (EPAs) and marine protected areas (MPAs), respectively. It has been hypothesized that adult white steenbras undertake large-scale coastal migrations between summer aggregation areas and winter spawning grounds. The scale of observed coastal movements was correlated with fish size (and age), with larger fish undertaking considerably longer-distance coastal movements than smaller individuals, supporting this hypothesis. Given the migratory behaviour of adults, and indications that limited spawning habitat exists, MPAs designed to protect white steenbras during the adult life stage should encompass all known spawning aggregation sites. The fishery is plagued by problems such as low compliance and low enforcement capacity, and alternative management measures, such as seasonal closure, need to be evaluated. Despite considerable conventional dart tagging effort around the coastline (5 782 fish tagged) with 292 recaptures there remains a lack of empirical evidence of fish migrating long distances (> 600 km) between aggregation and spawning areas. This uncertainty in the level of connectivity among coastal regions was addressed using mitochondrial DNA sequencing and genotyping of microsatellite repeat loci in the nuclear genome, which showed no evidence of major geographic barriers to gene flow in this species. Samples collected throughout the white steenbras core distribution showed high genetic diversity, low genetic differentiation and no evidence of isolation by distance or localised spawning. Although historically dominant in several fisheries, analysis of long-term commercial and recreational catch data for white steenbras indicated considerable declines and ultimately stock collapse. Improved catch-per-unit-effort in two large MPAs subsequent to closure confirmed that MPAs can be effective for the protection of white steenbras. However, the current MPA network encompasses a low proportion of sandy shoreline, for which white steenbras exhibits an affinity. Many MPAs do not prohibit recreational shore angling, which currently accounts for the greatest proportion of the total annual catch. Furthermore, EPAs within the juvenile distribution protect a negligible proportion of the total available surface area of estuaries – habitat on which white steenbras is wholly dependent. Despite some evidence of recent increases in abundance in estuaries and the surf zone in certain areas, white steenbras meets the criteria for “Endangered” on the IUCN Red List of Threatened Species, and for “Protected species” status on the National Environmental Management: Biodiversity Act of South Africa. The species requires improved management, with consideration for its life-history style, estuarine dependency, surf zone residency, predictable spawning migrations and its poor conservation status. The multidisciplinary approach provides valuable information towards an improved scientific basis for the management of white steenbras and a framework for research that can be adopted for other overexploited, estuarine-associated coastal fishery species.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »