Assessing the status of the Barotse floodplain fishery and the implications of Australian redclaw crayfish Cherax quadricarinatus invasion on the fishery
- Authors: Nawa, Nawa
- Date: 2024-10-11
- Subjects: Zambezi Floodplains , Fishery resources Zambia Barotse Flood Plain , Introduced fishes Economic aspects , Cherax quadricarinatus , Fishery management
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466803 , vital:76780 , DOI https://doi.org/10.21504/10962/466803
- Description: Inland capture fisheries play an important role of supporting livelihoods of people in developing countries. Despite their significance these fisheries are often poorly monitored resulting in them being undervalued and often missing from policy and decision-making relating to food security and water use, particularly in third world countries. The Anthropocene has given rise to increased pressure on these systems, further justifying the need for monitoring activities to determine the ecosystem service provision status and the levels of existing and emerging threats to such services. This thesis focuses on the Barotse floodplain fishery of the Upper Zambezi system and the potential implications of the recent Cherax quadricarinatus invasion on the floodplain fishery. The thesis specifically assesses the current status of the fishery (Chapter 3), invasion dynamics of C. quadricarinatus (Chapter 4), economic impact of C. quadricarinatus on the fishery (Chapter 5) and fishers’ knowledge, awareness and perception of C. quadricarinatus (Chapter 6). To evaluate the current status of the fishery (Chapter 3), fisheries dependant surveys were conducted. The study revealed a multi-gear multi-species fishery with average catch rates of 5.83 kg per fisher per day and estimated annual harvest of 3123 tonnes per annum. The decline in catch rate, low mean sizes of species harvested, change in species composition, and predominant use of illegal fishing gear compared to previous surveys, suggested further overexploitation of fishery resources. The invasive C. quadricarinatus was identified as the most dominant by-catch species and more prevalent among fishers at the invasion core and in dry season. Analysis of the invasion dynamics of C. quadricarinatus (Chapter 4) involved extensive survey of the Barotse floodplain using collapsible promar traps. The study revealed significant up and down-stream spread from the 2019 range on the floodplain. Relative abundance was higher at the invasion core compared to the invasion edge while male to female sex ratio was not different between these zones, implying both sexes were acting as dispersers. Signals of environmental filtering were not detected while density dependent spatial sorting, and hydrological variation had a strong influence on C. quadricarinatus spread. To quantify economic impact C. quadricarinatus (Chapter 5) creel surveys were conducted during wet and dry season across the invasion range. The study showed that fish damage due to crayfish was limited to gillnets at the invasion core during the dry season and equated to the monetary loss of ~ US$ 21,000 per annum. In addition, gear damage and loss of time due to crayfish was experienced for various fishing gears but most prevalent at the invasion core and more so in dry season. Assessment of fishers’ awareness, knowledge and perception (Chapter 6) involved the use of social surveys administered at the invasion core. This component revealed that most of the respondents were aware of, but not knowledgeable about C. quadricarinatus. Respondents were not aware of any management information relating to C. quadricarinatus and consequently did not follow any management practices. The respondents were supportive of management interventions due to their perceived threat of C. quadricarinatus to the fishery. Age, education, and residence of respondents significantly influenced knowledge and perceptions of C. quadricarinatus. Findings from this study have important implications for the conservation of floodplain wetlands as it informs policy makers to put in place measures that address both overexploitation and aquatic invasive species dynamics to better facilitate sustainability of fisheries and conservation of biodiversity. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2024
- Full Text:
- Authors: Nawa, Nawa
- Date: 2024-10-11
- Subjects: Zambezi Floodplains , Fishery resources Zambia Barotse Flood Plain , Introduced fishes Economic aspects , Cherax quadricarinatus , Fishery management
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466803 , vital:76780 , DOI https://doi.org/10.21504/10962/466803
- Description: Inland capture fisheries play an important role of supporting livelihoods of people in developing countries. Despite their significance these fisheries are often poorly monitored resulting in them being undervalued and often missing from policy and decision-making relating to food security and water use, particularly in third world countries. The Anthropocene has given rise to increased pressure on these systems, further justifying the need for monitoring activities to determine the ecosystem service provision status and the levels of existing and emerging threats to such services. This thesis focuses on the Barotse floodplain fishery of the Upper Zambezi system and the potential implications of the recent Cherax quadricarinatus invasion on the floodplain fishery. The thesis specifically assesses the current status of the fishery (Chapter 3), invasion dynamics of C. quadricarinatus (Chapter 4), economic impact of C. quadricarinatus on the fishery (Chapter 5) and fishers’ knowledge, awareness and perception of C. quadricarinatus (Chapter 6). To evaluate the current status of the fishery (Chapter 3), fisheries dependant surveys were conducted. The study revealed a multi-gear multi-species fishery with average catch rates of 5.83 kg per fisher per day and estimated annual harvest of 3123 tonnes per annum. The decline in catch rate, low mean sizes of species harvested, change in species composition, and predominant use of illegal fishing gear compared to previous surveys, suggested further overexploitation of fishery resources. The invasive C. quadricarinatus was identified as the most dominant by-catch species and more prevalent among fishers at the invasion core and in dry season. Analysis of the invasion dynamics of C. quadricarinatus (Chapter 4) involved extensive survey of the Barotse floodplain using collapsible promar traps. The study revealed significant up and down-stream spread from the 2019 range on the floodplain. Relative abundance was higher at the invasion core compared to the invasion edge while male to female sex ratio was not different between these zones, implying both sexes were acting as dispersers. Signals of environmental filtering were not detected while density dependent spatial sorting, and hydrological variation had a strong influence on C. quadricarinatus spread. To quantify economic impact C. quadricarinatus (Chapter 5) creel surveys were conducted during wet and dry season across the invasion range. The study showed that fish damage due to crayfish was limited to gillnets at the invasion core during the dry season and equated to the monetary loss of ~ US$ 21,000 per annum. In addition, gear damage and loss of time due to crayfish was experienced for various fishing gears but most prevalent at the invasion core and more so in dry season. Assessment of fishers’ awareness, knowledge and perception (Chapter 6) involved the use of social surveys administered at the invasion core. This component revealed that most of the respondents were aware of, but not knowledgeable about C. quadricarinatus. Respondents were not aware of any management information relating to C. quadricarinatus and consequently did not follow any management practices. The respondents were supportive of management interventions due to their perceived threat of C. quadricarinatus to the fishery. Age, education, and residence of respondents significantly influenced knowledge and perceptions of C. quadricarinatus. Findings from this study have important implications for the conservation of floodplain wetlands as it informs policy makers to put in place measures that address both overexploitation and aquatic invasive species dynamics to better facilitate sustainability of fisheries and conservation of biodiversity. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2024
- Full Text:
An eco-physiological investigation of fisheries-induced evolution: comparing the resilience of larvae from exploited and unexploited commercial reef fish populations to projected ocean acidification
- Authors: Muller, Cuen
- Date: 2022-04-08
- Subjects: Ocean acidification , Fishes Climatic factors , Fishes Physiology , Fishes Metabolism , Fishes Respiration , Fishes Larvae , Fishery management , Chrysoblephus laticeps (Red roman)
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/232579 , vital:50004 , DOI 10.21504/10962/232579
- Description: It is now accepted that anthropogenic-induced climate change is resulting in unprecedented rates of change to marine environments. Marine organisms are being challenged by rapidly increasing temperatures, acidification, expansion of oxygen dead zones, and higher frequencies and magnitudes of extreme weather events. Exploited fish populations are also undergoing selective harvesting. Certain traits, such as large size, fast growth, and/or bold/active behaviours, are being actively targeted and removed from the population gene pool. This selective removal of individuals may compromise the capacity of fish populations to resist or recover from environmental disturbances and reduce their ability to adapt to a changing environment as many of these traits are heritable. As most marine fishes' embryonic and larval stages represent the period when individuals are most sensitive to environmental disturbances, they are a critical bottleneck to population persistence in the face of exploitation and climate change. This thesis aimed to quantify and compare the metabolic physiology, growth, and development of an exploited and endemic sparid, the roman seabream Chrysoblephus laticeps, during the early larval stages under 1) ocean acidification conditions expected by the year 2100 and 2) from populations experiencing dissimilar rates of exploitation. To quantify and compare the physiology of larvae, adult C. laticeps from an exploited population were captured and field-spawned. Fertilised eggs were placed into either control/present-day conditions (pH = 8.03, pCO2 ≈ 420 μatm) or high-pCO2/hypercapnic treatment conditions (pH = 7.63, pCO2 ≈ 1400 μatm). The metabolic physiology of individual larvae was determined using a novel rolling-regression technique on static respirometry data. Here, estimates of the minimum and maximum oxygen consumption rates (VO2) could be determined with high test-retest reliability. The very early developmental stages (yolk-sac stage) appeared resilient to high pCO2 conditions despite being exposed to treatment conditions throughout the embryonic stage. Preflexion larvae showed sensitivity to treatment conditions by exhibiting reduced metabolic and growth rates, consistent with metabolic depression, associated with environmental stress. However, by the onset of flexion, which coincides with gill development, acid-base regulation, and muscle differentiation, metabolic and growth rates of treatment larvae were significantly greater than that of controls. This suggests that acid-base regulation imposes a high cost to maintain internal pH homeostasis. Importantly, these elevated metabolic costs were likely mediated through increased feeding rates in experimental conditions where food was ad libitum. In natural conditions, where food availability may be varied, high pCO2 conditions could be associated with higher mortality rates. Based on evidence that protected/unexploited populations are more genetically diverse and are composed of individuals representing a greater range of metabolic phenotypes, offspring were collected from a protected population experiencing otherwise similar environmental conditions to the exploited population. Metabolic rates of control larvae were generally similar to those of the exploited population. However, minimum rates of VO2 were typically higher for larvae from the protected population at comparable life stages. Preflexion treatment larvae from the protected population did not appear to undergo a period of reduced metabolism or growth compared to their control counterparts. While metabolic rates at the onset of flexion were significantly higher for treatment larvae, this was not associated with growth differences. Growth over-compensation following periods of growth depression is often associated with deleterious effects, such as organ damage and body or developmental malformations. This suggests somewhat improved resilience to ocean acidification conditions. This thesis found evidence that larval C. laticeps are sensitive to ocean acidification conditions expected by 2100. When this stressor is combined with increasing thermal variability, changing current coastal regimes, and heterogeneous food availability, also expected to occur by 2100, ocean acidification may compromise the population persistence of this species. However, an energetics approach to stress-tolerance suggests that larvae from the protected population may inherently show greater resilience to climate change-related environmental stressors. Evidence that exploitation affects the resilience of fish larvae to climate change highlights the need for an evolutionary approach to fisheries management and the importance of spatial protection in maintaining larger and more resilient populations while providing the raw material essential for adaptation. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Authors: Muller, Cuen
- Date: 2022-04-08
- Subjects: Ocean acidification , Fishes Climatic factors , Fishes Physiology , Fishes Metabolism , Fishes Respiration , Fishes Larvae , Fishery management , Chrysoblephus laticeps (Red roman)
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/232579 , vital:50004 , DOI 10.21504/10962/232579
- Description: It is now accepted that anthropogenic-induced climate change is resulting in unprecedented rates of change to marine environments. Marine organisms are being challenged by rapidly increasing temperatures, acidification, expansion of oxygen dead zones, and higher frequencies and magnitudes of extreme weather events. Exploited fish populations are also undergoing selective harvesting. Certain traits, such as large size, fast growth, and/or bold/active behaviours, are being actively targeted and removed from the population gene pool. This selective removal of individuals may compromise the capacity of fish populations to resist or recover from environmental disturbances and reduce their ability to adapt to a changing environment as many of these traits are heritable. As most marine fishes' embryonic and larval stages represent the period when individuals are most sensitive to environmental disturbances, they are a critical bottleneck to population persistence in the face of exploitation and climate change. This thesis aimed to quantify and compare the metabolic physiology, growth, and development of an exploited and endemic sparid, the roman seabream Chrysoblephus laticeps, during the early larval stages under 1) ocean acidification conditions expected by the year 2100 and 2) from populations experiencing dissimilar rates of exploitation. To quantify and compare the physiology of larvae, adult C. laticeps from an exploited population were captured and field-spawned. Fertilised eggs were placed into either control/present-day conditions (pH = 8.03, pCO2 ≈ 420 μatm) or high-pCO2/hypercapnic treatment conditions (pH = 7.63, pCO2 ≈ 1400 μatm). The metabolic physiology of individual larvae was determined using a novel rolling-regression technique on static respirometry data. Here, estimates of the minimum and maximum oxygen consumption rates (VO2) could be determined with high test-retest reliability. The very early developmental stages (yolk-sac stage) appeared resilient to high pCO2 conditions despite being exposed to treatment conditions throughout the embryonic stage. Preflexion larvae showed sensitivity to treatment conditions by exhibiting reduced metabolic and growth rates, consistent with metabolic depression, associated with environmental stress. However, by the onset of flexion, which coincides with gill development, acid-base regulation, and muscle differentiation, metabolic and growth rates of treatment larvae were significantly greater than that of controls. This suggests that acid-base regulation imposes a high cost to maintain internal pH homeostasis. Importantly, these elevated metabolic costs were likely mediated through increased feeding rates in experimental conditions where food was ad libitum. In natural conditions, where food availability may be varied, high pCO2 conditions could be associated with higher mortality rates. Based on evidence that protected/unexploited populations are more genetically diverse and are composed of individuals representing a greater range of metabolic phenotypes, offspring were collected from a protected population experiencing otherwise similar environmental conditions to the exploited population. Metabolic rates of control larvae were generally similar to those of the exploited population. However, minimum rates of VO2 were typically higher for larvae from the protected population at comparable life stages. Preflexion treatment larvae from the protected population did not appear to undergo a period of reduced metabolism or growth compared to their control counterparts. While metabolic rates at the onset of flexion were significantly higher for treatment larvae, this was not associated with growth differences. Growth over-compensation following periods of growth depression is often associated with deleterious effects, such as organ damage and body or developmental malformations. This suggests somewhat improved resilience to ocean acidification conditions. This thesis found evidence that larval C. laticeps are sensitive to ocean acidification conditions expected by 2100. When this stressor is combined with increasing thermal variability, changing current coastal regimes, and heterogeneous food availability, also expected to occur by 2100, ocean acidification may compromise the population persistence of this species. However, an energetics approach to stress-tolerance suggests that larvae from the protected population may inherently show greater resilience to climate change-related environmental stressors. Evidence that exploitation affects the resilience of fish larvae to climate change highlights the need for an evolutionary approach to fisheries management and the importance of spatial protection in maintaining larger and more resilient populations while providing the raw material essential for adaptation. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
The genetic stock structure and distribution of Chrysoblephus Puniceus, a commercially important transboundary linefish species, endemic to the South West Indian Ocean
- Authors: Duncan, Murray Ian
- Date: 2014
- Subjects: Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5360 , http://hdl.handle.net/10962/d1011868 , Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Description: Chrysoblephus puniceus is an over-exploited linefish species, endemic to the coastlines off southern Mozambique and eastern South Africa. Over-exploitation and habitat loss are two of the biggest threats to the sustainability of fisheries globally. Assessing the genetic stock structure (a prerequisite for effective management) and predicting climate related range changes will provide a better understanding of these threats to C. puniceus which can be used to improve the sustainability of the fishery. Two hundred and eighty four genetic samples were collected from eight sampling sites between Ponta da Barra in Mozambique and Coffee Bay in South Africa. The mitochondrial control region and ten microsatellite loci were amplified to analyse the stock structure of C. puniceus. The majority of microsatellite and mtDNA pairwise population comparisons were not significant (P > 0.05) although Xai Xai and Inhaca populations had some significant population comparisons for mtDNA (P < 0.05). AMOVA did not explain any significant variation at the between groups hierarchical level for any pre-defined groupings except for a mtDNA grouping which separated out Xai Xai and Inhaca from other sampling sites. SAMOVA, isolation by distance tests, structure analysis, principle component analysis and spatial autocorrelation analysis all indicated a single population of C. puniceus as being most likely. The migrate-n analysis provided evidence of current driven larval transport, with net migration rates influenced by current dynamics.Two hundred and thirty six unique presence points of C. puniceus were correlated with seasonal maximum and minimum temperature data and bathymetry to model the current distribution and predict future distribution changes of the species up until 2030. Eight individual species distribution models were developed and combined into a mean ensemble model using the Biomod2 package. Winter minimum temperature was the most important variable in determining models outputs. Overall the ensemble model was accurate with a true skills statistic score of 0.962. Binary transformed mean ensemble models predicted a northern and southern range contraction of C. puniceus' distribution of 15 percent; by 2030. The mean ensemble probability of occurrence models indicated that C. puniceus' abundance is likely to decrease off the southern Mozambique coastline but remain high off KwaZulu-Natal. The results of the genetic analysis support the theory of external recruitment sustaining the KwaZulu Natal fishery for C. puniceus. While the high genetic diversity and connectivity may make C. puniceus more resilient to disturbances, the loss of 15 percent; distribution and 11 percent; genetic diversity by 2030 will increase the species vulnerability. The decrease in abundance of C. puniceus off southern Mozambique together with current widespread exploitation levels could result in the collapse of the fishery. A single transboundary stock of C. puniceus highlights the need for co-management of the species. A combined stock assessment between South Africa and Mozambique and the development of further Marine Protected Areas off southern Mozambique are suggested as management options to minimise the vulnerability of this species.
- Full Text:
- Authors: Duncan, Murray Ian
- Date: 2014
- Subjects: Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5360 , http://hdl.handle.net/10962/d1011868 , Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Description: Chrysoblephus puniceus is an over-exploited linefish species, endemic to the coastlines off southern Mozambique and eastern South Africa. Over-exploitation and habitat loss are two of the biggest threats to the sustainability of fisheries globally. Assessing the genetic stock structure (a prerequisite for effective management) and predicting climate related range changes will provide a better understanding of these threats to C. puniceus which can be used to improve the sustainability of the fishery. Two hundred and eighty four genetic samples were collected from eight sampling sites between Ponta da Barra in Mozambique and Coffee Bay in South Africa. The mitochondrial control region and ten microsatellite loci were amplified to analyse the stock structure of C. puniceus. The majority of microsatellite and mtDNA pairwise population comparisons were not significant (P > 0.05) although Xai Xai and Inhaca populations had some significant population comparisons for mtDNA (P < 0.05). AMOVA did not explain any significant variation at the between groups hierarchical level for any pre-defined groupings except for a mtDNA grouping which separated out Xai Xai and Inhaca from other sampling sites. SAMOVA, isolation by distance tests, structure analysis, principle component analysis and spatial autocorrelation analysis all indicated a single population of C. puniceus as being most likely. The migrate-n analysis provided evidence of current driven larval transport, with net migration rates influenced by current dynamics.Two hundred and thirty six unique presence points of C. puniceus were correlated with seasonal maximum and minimum temperature data and bathymetry to model the current distribution and predict future distribution changes of the species up until 2030. Eight individual species distribution models were developed and combined into a mean ensemble model using the Biomod2 package. Winter minimum temperature was the most important variable in determining models outputs. Overall the ensemble model was accurate with a true skills statistic score of 0.962. Binary transformed mean ensemble models predicted a northern and southern range contraction of C. puniceus' distribution of 15 percent; by 2030. The mean ensemble probability of occurrence models indicated that C. puniceus' abundance is likely to decrease off the southern Mozambique coastline but remain high off KwaZulu-Natal. The results of the genetic analysis support the theory of external recruitment sustaining the KwaZulu Natal fishery for C. puniceus. While the high genetic diversity and connectivity may make C. puniceus more resilient to disturbances, the loss of 15 percent; distribution and 11 percent; genetic diversity by 2030 will increase the species vulnerability. The decrease in abundance of C. puniceus off southern Mozambique together with current widespread exploitation levels could result in the collapse of the fishery. A single transboundary stock of C. puniceus highlights the need for co-management of the species. A combined stock assessment between South Africa and Mozambique and the development of further Marine Protected Areas off southern Mozambique are suggested as management options to minimise the vulnerability of this species.
- Full Text:
- «
- ‹
- 1
- ›
- »