Synthesis and applications of novel fluorescent and colorimetric coumarin-based sensors towards analyte sensing in aqueous systems
- Authors: Battison, Aidan Leigh
- Date: 2022-04
- Subjects: Water-supply engineering--Technological innovations , Polymers--Optical properties , Fluorescent polymers
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10948/55954 , vital:54558
- Description: The continuous growth of mankind has not been considerate to the environment. The release of millions of tonnes of toxic heavy metal cations and anionic species through industrial, mining, agricultural, and electronic dumping has led to disease and, in many instances, death. This is usually suffered by low-income informal populations residing in third world countries. Moreover, many unnecessary deaths of children are becoming more prevalent because of consumption and contact with contaminated water, agricultural, and animal sources. Bioaccumulation of these toxic species in fish, plants, and animals, inevitably make their way back to the unaware general population. As growth by mining, agriculture, and electronics are indeed vital aspects of human development, the negative side effects of these activities usually continue unregulated. Therefore, as these processes are set to continue until more stringent regulatory processes are put into legislature; low-cost, sensitive, selective organic based sensors are a step in the right direction towards highlighting the need for environmental restoration and remediation; whilst also aiming to preventing unnecessary disease and death in the process. Herein, coumarin derived small-molecule fluorescent and colorimetric sensors for the quantitative and qualitative assessment of cationic and anionic species in aqueous and organic media are described. Ten fluorescent sensors supporting 1,4-disubstituted triazolyl moieties were synthesized according to Cu(I)-catalyzed azide-alkyne cycloaddition “click” reactions. These sensors were screened for their cationic and anionic affinities in a variety of solvent systems. Majority of the sensors responded well towards Fe3+, characterized by a strong fluorescent quenching response with a good degree of sensitivity and selectivity. Selected sensors were further investigated for their affinities towards anionic species; however, they did not display the same degree of selectivity or sensitivity towards these chosen anions. Titration studies of selected sensors with Fe3+ were able to be used towards determining the modes of fluorescent quenching; the photophysical mechanisms by which quenching occurs; stoichiometric binding ratios, association constants, and the number of coordination sites present between the sensors and Fe3+. Reversibility studies of the sensor-metal complex was investigated with EDTA. Partial reversibility was achieved for the chosen sensors with Fe3+. Hydrogen potential studies further described the application of these sensors over a good pH range. The binding site between the sensors and Fe3+ was investigated by NMR studies. , Thesis (PhD) -- Faculty of Science, School of Biomecular and Chemical Sciences, 2022
- Full Text:
- Date Issued: 2022-04
- Authors: Battison, Aidan Leigh
- Date: 2022-04
- Subjects: Water-supply engineering--Technological innovations , Polymers--Optical properties , Fluorescent polymers
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10948/55954 , vital:54558
- Description: The continuous growth of mankind has not been considerate to the environment. The release of millions of tonnes of toxic heavy metal cations and anionic species through industrial, mining, agricultural, and electronic dumping has led to disease and, in many instances, death. This is usually suffered by low-income informal populations residing in third world countries. Moreover, many unnecessary deaths of children are becoming more prevalent because of consumption and contact with contaminated water, agricultural, and animal sources. Bioaccumulation of these toxic species in fish, plants, and animals, inevitably make their way back to the unaware general population. As growth by mining, agriculture, and electronics are indeed vital aspects of human development, the negative side effects of these activities usually continue unregulated. Therefore, as these processes are set to continue until more stringent regulatory processes are put into legislature; low-cost, sensitive, selective organic based sensors are a step in the right direction towards highlighting the need for environmental restoration and remediation; whilst also aiming to preventing unnecessary disease and death in the process. Herein, coumarin derived small-molecule fluorescent and colorimetric sensors for the quantitative and qualitative assessment of cationic and anionic species in aqueous and organic media are described. Ten fluorescent sensors supporting 1,4-disubstituted triazolyl moieties were synthesized according to Cu(I)-catalyzed azide-alkyne cycloaddition “click” reactions. These sensors were screened for their cationic and anionic affinities in a variety of solvent systems. Majority of the sensors responded well towards Fe3+, characterized by a strong fluorescent quenching response with a good degree of sensitivity and selectivity. Selected sensors were further investigated for their affinities towards anionic species; however, they did not display the same degree of selectivity or sensitivity towards these chosen anions. Titration studies of selected sensors with Fe3+ were able to be used towards determining the modes of fluorescent quenching; the photophysical mechanisms by which quenching occurs; stoichiometric binding ratios, association constants, and the number of coordination sites present between the sensors and Fe3+. Reversibility studies of the sensor-metal complex was investigated with EDTA. Partial reversibility was achieved for the chosen sensors with Fe3+. Hydrogen potential studies further described the application of these sensors over a good pH range. The binding site between the sensors and Fe3+ was investigated by NMR studies. , Thesis (PhD) -- Faculty of Science, School of Biomecular and Chemical Sciences, 2022
- Full Text:
- Date Issued: 2022-04
Synthesis of fluorescent polymers with pendant triazole-quinoline groups via raft polymerization
- Ngororabanga, Jean Marie Vianney
- Authors: Ngororabanga, Jean Marie Vianney
- Date: 2014
- Subjects: Fluorescent polymers , Polymerization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10440 , http://hdl.handle.net/10948/d1020798
- Description: In this study, fluorescent polymers with pendant quinoline groups were synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) from a fluorescent quinoline-based vinyl monomer, synthesized in multiple steps from p-nitroaniline and crotonaldehyde. The structures of the synthesized vinyl monomer and polymers were confirmed by NMR and FT-IR spectroscopy, X-ray studies and modeling stdies. The photophysical properties of the synthesized quinoline compounds and resulting polymers were investigated. In order to evaluate the binding potential of our quinoline-based polymer in the presence of transition metal ions, preliminary studies on a complexation of quinoline-based polymers with Zn, Cd, Hg, Fe, and Ni were carried out. The investigation of fluorescence properties of the complexes showed fluorescence quenching for Fe(II), and fluorescence enhancement for the remaining ions [Zn(II), Cd(II), Hg(II), and Ni(II)].
- Full Text:
- Date Issued: 2014
- Authors: Ngororabanga, Jean Marie Vianney
- Date: 2014
- Subjects: Fluorescent polymers , Polymerization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10440 , http://hdl.handle.net/10948/d1020798
- Description: In this study, fluorescent polymers with pendant quinoline groups were synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) from a fluorescent quinoline-based vinyl monomer, synthesized in multiple steps from p-nitroaniline and crotonaldehyde. The structures of the synthesized vinyl monomer and polymers were confirmed by NMR and FT-IR spectroscopy, X-ray studies and modeling stdies. The photophysical properties of the synthesized quinoline compounds and resulting polymers were investigated. In order to evaluate the binding potential of our quinoline-based polymer in the presence of transition metal ions, preliminary studies on a complexation of quinoline-based polymers with Zn, Cd, Hg, Fe, and Ni were carried out. The investigation of fluorescence properties of the complexes showed fluorescence quenching for Fe(II), and fluorescence enhancement for the remaining ions [Zn(II), Cd(II), Hg(II), and Ni(II)].
- Full Text:
- Date Issued: 2014
Synthesis of fluorescent polymers with coumarin backbones by "click" polymerization
- Authors: Okerio, Jaspher Mosomi
- Date: 2013
- Subjects: Polymerization , Fluorescent polymers
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10431 , http://hdl.handle.net/10948/d1020132
- Description: Click chemistry is one of the growing areas of research which is applied in the design and synthesis of a wide range of polymeric architectures. This investigation focuses on the synthesis of fluorescent coumarin based polymers by “click” A-B step growth polymerization process and evaluation of their photophysical properties. Non-fluorescent azide-alkyne functionalized coumarin-based monomers were synthesized in multiple steps from 2,4-dihydroxybenzaldehyde in reasonable yields. Polymers with coumarin backbone were synthesized from azide-alkyne functionalized coumarin monomers via the Cu(I) catalyzed 1,3-dipolar cycloaddition reaction between azides and alkynes, a typical click reaction, to form polymers whose repeating units are connected by a 1,2,3-triazole ring. The structures of the synthesized polymers were confirmed by NMR and FT-IR spectroscopy. Finally, the photophysical properties of the synthesized monomers and polymers were evaluated in DMF. All coumarin based monomers showed reduced fluorescent properties due to the quenching effect from the azido group. Although all polymers absorbed at maximum wavelength of 340 nm, a characteristic for coumarin chromophore, the homo-polymers emitted at a shorter wavelength of 413 nm as compared to the co-polymers which emitted at 421 nm.
- Full Text:
- Date Issued: 2013
- Authors: Okerio, Jaspher Mosomi
- Date: 2013
- Subjects: Polymerization , Fluorescent polymers
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10431 , http://hdl.handle.net/10948/d1020132
- Description: Click chemistry is one of the growing areas of research which is applied in the design and synthesis of a wide range of polymeric architectures. This investigation focuses on the synthesis of fluorescent coumarin based polymers by “click” A-B step growth polymerization process and evaluation of their photophysical properties. Non-fluorescent azide-alkyne functionalized coumarin-based monomers were synthesized in multiple steps from 2,4-dihydroxybenzaldehyde in reasonable yields. Polymers with coumarin backbone were synthesized from azide-alkyne functionalized coumarin monomers via the Cu(I) catalyzed 1,3-dipolar cycloaddition reaction between azides and alkynes, a typical click reaction, to form polymers whose repeating units are connected by a 1,2,3-triazole ring. The structures of the synthesized polymers were confirmed by NMR and FT-IR spectroscopy. Finally, the photophysical properties of the synthesized monomers and polymers were evaluated in DMF. All coumarin based monomers showed reduced fluorescent properties due to the quenching effect from the azido group. Although all polymers absorbed at maximum wavelength of 340 nm, a characteristic for coumarin chromophore, the homo-polymers emitted at a shorter wavelength of 413 nm as compared to the co-polymers which emitted at 421 nm.
- Full Text:
- Date Issued: 2013
Synthesis of fluorescent polymers with pendant triazole-substituted coumarin side-chains via a combination of click chemistry and raft-mediated polymerization
- Authors: Wali, Nwabisa Whitney
- Date: 2013
- Subjects: Fluorescent polymers , Polymerization , Macromolecules -- Synthesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10432 , http://hdl.handle.net/10948/d1020142
- Description: This research project focuses on the synthesis of fluorescent polymers with pendant triazole-substituted coumarin side chain units. Copper(I)-catalyzed Huisgen’s 1,3-dipolar cycloaddition of alkynes with azides to form a 1,2,3-triazole ring, a typical example of “click” reaction, has been utilized for the synthesis of a novel vinyl monomer, 2-oxo-3-(4- vinyl-1H-1,2,3-triazol-1-yl)-2H-chromen-7-yl acetate 62. The monomer and its precursors were synthesised and characterized using 1D- and 2D-NMR and FT-IR. Coumarin-containing triazole polymers were synthesised using free radical polymerization. Reversible Addition-Fragmentation Chain Transfer (RAFT)-mediated polymerization was used to synthesise well defined coumarin-containing triazole polymers with moderate PDI values. The polymers were characterised using 1H-NMR and FT-IR. Modelling of the monomer precursor 61 and the monomer 62 at DFT level of approximation provided useful insights into possible conformations adopted by the monomer precursor 61 and the monomer 62. The photophysical properties of the novel monomer and the synthesised polymers were investigated in a polar solvent.
- Full Text:
- Date Issued: 2013
- Authors: Wali, Nwabisa Whitney
- Date: 2013
- Subjects: Fluorescent polymers , Polymerization , Macromolecules -- Synthesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10432 , http://hdl.handle.net/10948/d1020142
- Description: This research project focuses on the synthesis of fluorescent polymers with pendant triazole-substituted coumarin side chain units. Copper(I)-catalyzed Huisgen’s 1,3-dipolar cycloaddition of alkynes with azides to form a 1,2,3-triazole ring, a typical example of “click” reaction, has been utilized for the synthesis of a novel vinyl monomer, 2-oxo-3-(4- vinyl-1H-1,2,3-triazol-1-yl)-2H-chromen-7-yl acetate 62. The monomer and its precursors were synthesised and characterized using 1D- and 2D-NMR and FT-IR. Coumarin-containing triazole polymers were synthesised using free radical polymerization. Reversible Addition-Fragmentation Chain Transfer (RAFT)-mediated polymerization was used to synthesise well defined coumarin-containing triazole polymers with moderate PDI values. The polymers were characterised using 1H-NMR and FT-IR. Modelling of the monomer precursor 61 and the monomer 62 at DFT level of approximation provided useful insights into possible conformations adopted by the monomer precursor 61 and the monomer 62. The photophysical properties of the novel monomer and the synthesised polymers were investigated in a polar solvent.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »