Lateritisation and secondary gold distribution with particular reference to Western Australia
- Authors: Coxon, Brian Duncan
- Date: 1993
- Subjects: Laterite -- Australia , Gold ores -- Geology -- Australia
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4974 , http://hdl.handle.net/10962/d1005586 , Laterite -- Australia , Gold ores -- Geology -- Australia
- Description: Lateritisation is associated with tropical climates and geomorphic conditions of peneplanation where hydromorphic processes of weathering predominate. Laterites are products of relative (residual) and absolute(chemical) accumulation after leaching of mobile constituents. Their major element chemistry is controlled by the aluminous character of bedrock and drainage. Bauxitisation is characterised by residual gibbsite neoformation and lateritisation, by both residual accumulation and hydromorphic precipitation of goethite controlled by the redox front at the water table. The laterite forms part of a weathering profile that is underlain by saprock, saprolite, the mottled zone and overlain by a soil horizon. The secondary gold in laterites has its source invariably with mineralised bedrock. The distribution of secondary gold is controlled by mechanical eluviation and hydromorphic processes governed by organic, thiosulphate and chloride complexing. The precipitation of secondary gold is controlled by pH conditions, stability of the complexing agent and ferrolysis. Gold-bearing laterites are Cainozoic in age and are best developed on stable Archean and Proterozoic cratons that have suffered epeirogenesis since lateritisation. Mechanical eluviation increases in influence at the expense of hydromorphic processes as a positive function of topographic slope and degradation rate. Gradients greater than 10⁰ are not conducive for lateritisation, with latosols forming instead. High vertical degradation rates may lead to the development of stone lines. In the Western Australian case, post-laterite aridification has controlled the redistribution of secondary gold at levels marked by stabilisation of the receding palaeowater table. Mineable reserves of lateritic ore are located at Boddington, Westonia and Gibson toward the south-west of the Yilgarn Block. A significant controlling variable appears to be the concentration of chloride in the regolith. Based on the Boddington model, the laterite concentrates the following elements from bedrock gold lodes: i) Mo, Sb, W, Hg, Bi and Au as mobile constituents. ii) As and Pb as immobile constituents. Geochemical sampling of ferruginous lag after bedrock and laterite has provided dispersed anomalies that are easily identifiable. "Chalcophile corridors" up to 150 km in length are defined broadly by As and Sb but contain more discrete anomalies of Bi, Mo, Ag, Sn, W, Se or Au, in the Yilgarn Block. The nature of the weathered bedrock, the tabular distribution of secondary gold ore deposition and the infrastructural environment lends the lateritic regolith to low cost, open-cut mining. The western Australian lateritic-gold model perhaps can be adapted and modified for use elsewhere in the world.
- Full Text:
- Date Issued: 1993
- Authors: Coxon, Brian Duncan
- Date: 1993
- Subjects: Laterite -- Australia , Gold ores -- Geology -- Australia
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4974 , http://hdl.handle.net/10962/d1005586 , Laterite -- Australia , Gold ores -- Geology -- Australia
- Description: Lateritisation is associated with tropical climates and geomorphic conditions of peneplanation where hydromorphic processes of weathering predominate. Laterites are products of relative (residual) and absolute(chemical) accumulation after leaching of mobile constituents. Their major element chemistry is controlled by the aluminous character of bedrock and drainage. Bauxitisation is characterised by residual gibbsite neoformation and lateritisation, by both residual accumulation and hydromorphic precipitation of goethite controlled by the redox front at the water table. The laterite forms part of a weathering profile that is underlain by saprock, saprolite, the mottled zone and overlain by a soil horizon. The secondary gold in laterites has its source invariably with mineralised bedrock. The distribution of secondary gold is controlled by mechanical eluviation and hydromorphic processes governed by organic, thiosulphate and chloride complexing. The precipitation of secondary gold is controlled by pH conditions, stability of the complexing agent and ferrolysis. Gold-bearing laterites are Cainozoic in age and are best developed on stable Archean and Proterozoic cratons that have suffered epeirogenesis since lateritisation. Mechanical eluviation increases in influence at the expense of hydromorphic processes as a positive function of topographic slope and degradation rate. Gradients greater than 10⁰ are not conducive for lateritisation, with latosols forming instead. High vertical degradation rates may lead to the development of stone lines. In the Western Australian case, post-laterite aridification has controlled the redistribution of secondary gold at levels marked by stabilisation of the receding palaeowater table. Mineable reserves of lateritic ore are located at Boddington, Westonia and Gibson toward the south-west of the Yilgarn Block. A significant controlling variable appears to be the concentration of chloride in the regolith. Based on the Boddington model, the laterite concentrates the following elements from bedrock gold lodes: i) Mo, Sb, W, Hg, Bi and Au as mobile constituents. ii) As and Pb as immobile constituents. Geochemical sampling of ferruginous lag after bedrock and laterite has provided dispersed anomalies that are easily identifiable. "Chalcophile corridors" up to 150 km in length are defined broadly by As and Sb but contain more discrete anomalies of Bi, Mo, Ag, Sn, W, Se or Au, in the Yilgarn Block. The nature of the weathered bedrock, the tabular distribution of secondary gold ore deposition and the infrastructural environment lends the lateritic regolith to low cost, open-cut mining. The western Australian lateritic-gold model perhaps can be adapted and modified for use elsewhere in the world.
- Full Text:
- Date Issued: 1993
Gold metallogeny of Australia
- Authors: Rankine, Graham M
- Date: 1987
- Subjects: Gold ores -- Geology -- Australia , Gold mines and mining -- Australia , Gold -- Metallurgy -- Australia
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4928 , http://hdl.handle.net/10962/d1004676
- Description: The gold metallogeny of Australia is predominantly confined to the Archaean and Palaeozoic Provinces. The Archaean gold occurrences are predominantly hosted in ultramafic-mafic dominated greenstone belts, with less associated tofelsic-volcanic and sedimentary sequences. Most gold occurrences are confined to shear zones or faults, and adjacent discoveries of economic laterite-hosted deposits, host rocks. Recent are presently under investigation and will supply a significant proportion of production in the future. The Proterozoic gold deposits of Australia , are confined to geosyncinal sequences, commonly turbidites (eg: Telfer), with other hydrothermal deposits associated directly to granites. An important feature of the North Australian Craton deposits, is the spatial association of most deposits to granite bodies, although a genetic link has not been established conclusively. The Roxby Downs deposit in South Australia is a unique occurrence of gold in association to copper, uranium and R.E.E. This deposit is tentatively related to intraplate alkaline-magmatism, with further work necessary. The most significant recent discovery of gold mineralization in Australia is in the Drummond Basin in Queensland. This epithermal is tentatively related to mineralization within the Georgetown Inlier. The latter mineralization is Permo-Carboniferous, in a Proterozoic (and possibly Archaean) sequence of schists. It is tentatively suggested that all the gold mineralization in northern Queensland may be related to single tectonic event, a feature which requires further study . Other mineralization in the Phanerozoic includes the turbidite-hosted metamorphogenic deposits of Victoria, the rift related deposits in New South Wales and magmatic related deposits in Queensland. The gold deposits in Australia may in the future be classified in a tectonogeological framework, similiar to the layout of this dissertation, particularly once further data becomes available on recent discoveries.
- Full Text:
- Date Issued: 1987
- Authors: Rankine, Graham M
- Date: 1987
- Subjects: Gold ores -- Geology -- Australia , Gold mines and mining -- Australia , Gold -- Metallurgy -- Australia
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4928 , http://hdl.handle.net/10962/d1004676
- Description: The gold metallogeny of Australia is predominantly confined to the Archaean and Palaeozoic Provinces. The Archaean gold occurrences are predominantly hosted in ultramafic-mafic dominated greenstone belts, with less associated tofelsic-volcanic and sedimentary sequences. Most gold occurrences are confined to shear zones or faults, and adjacent discoveries of economic laterite-hosted deposits, host rocks. Recent are presently under investigation and will supply a significant proportion of production in the future. The Proterozoic gold deposits of Australia , are confined to geosyncinal sequences, commonly turbidites (eg: Telfer), with other hydrothermal deposits associated directly to granites. An important feature of the North Australian Craton deposits, is the spatial association of most deposits to granite bodies, although a genetic link has not been established conclusively. The Roxby Downs deposit in South Australia is a unique occurrence of gold in association to copper, uranium and R.E.E. This deposit is tentatively related to intraplate alkaline-magmatism, with further work necessary. The most significant recent discovery of gold mineralization in Australia is in the Drummond Basin in Queensland. This epithermal is tentatively related to mineralization within the Georgetown Inlier. The latter mineralization is Permo-Carboniferous, in a Proterozoic (and possibly Archaean) sequence of schists. It is tentatively suggested that all the gold mineralization in northern Queensland may be related to single tectonic event, a feature which requires further study . Other mineralization in the Phanerozoic includes the turbidite-hosted metamorphogenic deposits of Victoria, the rift related deposits in New South Wales and magmatic related deposits in Queensland. The gold deposits in Australia may in the future be classified in a tectonogeological framework, similiar to the layout of this dissertation, particularly once further data becomes available on recent discoveries.
- Full Text:
- Date Issued: 1987
- «
- ‹
- 1
- ›
- »