- Title
- The feasibility of reintroducing African wild dogs (Lycaon pictus) into the Great Fish River Nature Reserve, Eastern Cape, South Africa
- Creator
- Page, Samantha Karin
- ThesisAdvisor
- Parker, Daniel Matthew
- ThesisAdvisor
- Davies-Mostert, Harriet
- Subject
- Great Fish River Nature Reserve (South Africa)
- Subject
- African wild dog -- South Africa -- Eastern Cape
- Subject
- Population biology -- South Africa -- Eastern Cape
- Subject
- African wild dog -- Reintroduction -- South Africa -- Eastern Cape
- Subject
- African wild dog -- Population viability analysis -- South Africa -- Eastern Cape
- Date
- 2014
- Type
- Thesis
- Type
- Masters
- Type
- MSc
- Identifier
- vital:5915
- Identifier
- http://hdl.handle.net/10962/d1016078
- Description
- With a declining population of roughly 3000-5000 individuals in Africa, African wild dogs (Lycaon pictus) are one of the most endangered carnivores in the world. As the global human population expands, it is becoming increasingly unlikely that large portions of land will be set aside for conservation, especially in developing countries. Thus, recent wild dog conservation efforts in South Africa have concentrated on establishing a managed metapopulation. A metapopulation is a group of geographically isolated subpopulations of a species that are managed (using supplementation and harvesting) to mimic natural gene flow. The Great Fish River Nature Reserve (GFRNR) in the Eastern Cape Province of South Africa has been identified as a potential reserve to become part of the national wild dog metapopulation. My research aimed to conduct a feasibility assessment of the long-term (~ 25 years) success of a wild dog reintroduction into the GFRNR. This assessment included biological modelling of wild dogs and their expected prey, and determining the potential anthropogenic threats to wild dogs on the private and communal land surrounding the reserve. I used VORTEX population modelling and determined that the GFRNR is likely to have a wild dog carrying capacity of ~22 individuals. Using a 25-year modelling simulation, the most appropriate wild dog reintroduction scenario would be to reintroduce six females and four males initially and supplement the population with one female and two males in years 3, 10, 15 and 23. In addition, the harvesting/removal of one male and one female in years 10 and 20 would be required to ensure 100% population persistence and adequate genetic diversity. Kudu (Tragelaphus strepsiceros) and bushbuck (Tragelaphus scriptus) are expected to be the two most important prey species for reintroduced wild dogs in the GFRNR. Furthermore, wild dogs are likely to prefer the north-western and south-western sectors of the reserve because of the relatively high prey densities in these areas. However, regular monitoring of both the potential prey and the wild dog populations is essential to ensure persistence of the wild dogs and to prevent prey populations decreasing precipitously. Using structured questionnaire interviews (n = 128), I found that while neighbouring land owners and local communities were generally positive about the potential wild dog reintroduction (56 % of all respondents), several threats to wild dogs were identified along the reserve boundary and on the adjoining unprotected land. Some private landowners and members of rural communities around the reserve (34 %) stated that they would kill any wild dogs that dispersed onto their land. In addition, some respondents (8 %) admitted to believing in traditional uses for wild dog products (e.g. fur) which could result in the illegal killing of wild dogs outside of the GFRNR for traditional purposes. Poaching and the presence of unvaccinated domestic dogs on neighbouring land were also identified as being potential threats to a reintroduced wild dog population. However, such anthropogenic threats appear to be localised to the western and southern boundaries of the reserve. Therefore, by implementing preventative measures (such as anti-snare collars, anti-poaching patrols and vaccination against rabies and canine distemper) the likelihood of such threats occurring can be reduced. I conclude that the GFRNR can sustain a population of wild dogs and successfully contribute to South Africa‘s national metapopulation. An additional reserve will benefit the country‘s metapopulation by increasing the number of wild dogs available for translocation, thereby increasing genetic diversity and overall resilience (to environmental change, disease etc.) of South Africa‘s wild dog population. This will contribute towards the future conservation of this endangered species.
- Format
- 147 leaves, pdf
- Publisher
- Rhodes University, Faculty of Science, Zoology and Entomology
- Language
- English
- Rights
- Page, Samantha Karin
- Hits: 1449
- Visitors: 2008
- Downloads: 606
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCEPDF | 2 MB | Adobe Acrobat PDF | View Details Download |