Isolation of xylanolytic multi-enzyme complexes from Bacillus subtilis SJ01
- Authors: Jones, Sarah Melissa Jane
- Date: 2010
- Subjects: Bacillus subtilis , Xylans , Multienzyme complexes , Botanical chemistry , Cellulose , Hemicellulose , Polysaccharides
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3974 , http://hdl.handle.net/10962/d1004033 , Bacillus subtilis , Xylans , Multienzyme complexes , Botanical chemistry , Cellulose , Hemicellulose , Polysaccharides
- Description: Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that require multiple enzymes to degrade them. Multi-enzyme complexes (MECs) consist of a number of enzymes working in close proximity and synergistically to degrade complex substrates with higher efficiency than individual enzymes. The cellulosome is a cellulolytic MEC produced by anaerobic bacteria that has been studied extensively since its discovery in 1983. The aim of this study was to purify a cellulolytic and/or hemicellulolytic MEC from an aerobic bacterium of the Bacillus genus. Several bacterial isolates were identified using morphological characteristics and 16S rDNA sequencing, and screened for their ability to degrade cellulose and xylan using a MEC. The isolate that produced a high molecular weight protein fraction with the greatest ability to degrade Avicel®, carboxymethyl cellulose (CMC) and birchwood xylan was identified as Bacillus subtilis SJ01. An optimised growth medium, consisting of vitamins, trace elements, birchwood xylan (as the carbon source), and yeast and ammonium sulphate (as the nitrogen sources), increased the production of CMCase and xylanase enzymes from this bacterium. The removal of a competing bacterial strain from the culture and the inhibition of proteases also increased enzyme activities. A growth curve of B. subtilis SJ01 indicated that xylanase production was highest in early stationary growth phase and thus 84 hours was chosen as the best cell harvesting time. To purify the MECs produced by B. subtilis SJ01 size-exclusion chromatography on a Sephacryl S-400 column was used. It was concluded that (for the purposes of this study) the best method of concentrating the culture supernatant prior to loading onto Sephacryl S-400 was the use of ultrafiltration with a 50 kDa cut-off membrane. Two MECs, named C1 and C2 of 371 and 267 kDa, respectively, were purified from the culture supernatant of B. subtilis SJ01. Electrophoretic analysis revealed that these MECs consisted of 16 and 18 subunits, respectively, 4 of which degraded birchwood xylan and 5 of which degraded oat spelt xylan. The MECs degraded xylan substrates (C1: 0.24 U/mg, C2: 0.14 U/mg birchwood xylan) with higher efficiency than cellulose substrates (C1: 0.002 U/mg, C2: 0.01 U/mg CMC), and could therefore be considered xylanosomes. Interestingly, the MECs did not bind to insoluble birchwood xylan or Avicel® and did not contain glycosylated proteins, which are common features of cellulosomes. This study is, therefore, important in revealing the presence of MECs that differ from the cellulosome and that may have particular application in industries requiring high xylanase activity, such as the paper and pulp industry. The abundant genetic information available on B. subtilis means that this organism could also be used for genetic engineering of cellulolytic/hemicellulolytic MECs.
- Full Text:
- Authors: Jones, Sarah Melissa Jane
- Date: 2010
- Subjects: Bacillus subtilis , Xylans , Multienzyme complexes , Botanical chemistry , Cellulose , Hemicellulose , Polysaccharides
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3974 , http://hdl.handle.net/10962/d1004033 , Bacillus subtilis , Xylans , Multienzyme complexes , Botanical chemistry , Cellulose , Hemicellulose , Polysaccharides
- Description: Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that require multiple enzymes to degrade them. Multi-enzyme complexes (MECs) consist of a number of enzymes working in close proximity and synergistically to degrade complex substrates with higher efficiency than individual enzymes. The cellulosome is a cellulolytic MEC produced by anaerobic bacteria that has been studied extensively since its discovery in 1983. The aim of this study was to purify a cellulolytic and/or hemicellulolytic MEC from an aerobic bacterium of the Bacillus genus. Several bacterial isolates were identified using morphological characteristics and 16S rDNA sequencing, and screened for their ability to degrade cellulose and xylan using a MEC. The isolate that produced a high molecular weight protein fraction with the greatest ability to degrade Avicel®, carboxymethyl cellulose (CMC) and birchwood xylan was identified as Bacillus subtilis SJ01. An optimised growth medium, consisting of vitamins, trace elements, birchwood xylan (as the carbon source), and yeast and ammonium sulphate (as the nitrogen sources), increased the production of CMCase and xylanase enzymes from this bacterium. The removal of a competing bacterial strain from the culture and the inhibition of proteases also increased enzyme activities. A growth curve of B. subtilis SJ01 indicated that xylanase production was highest in early stationary growth phase and thus 84 hours was chosen as the best cell harvesting time. To purify the MECs produced by B. subtilis SJ01 size-exclusion chromatography on a Sephacryl S-400 column was used. It was concluded that (for the purposes of this study) the best method of concentrating the culture supernatant prior to loading onto Sephacryl S-400 was the use of ultrafiltration with a 50 kDa cut-off membrane. Two MECs, named C1 and C2 of 371 and 267 kDa, respectively, were purified from the culture supernatant of B. subtilis SJ01. Electrophoretic analysis revealed that these MECs consisted of 16 and 18 subunits, respectively, 4 of which degraded birchwood xylan and 5 of which degraded oat spelt xylan. The MECs degraded xylan substrates (C1: 0.24 U/mg, C2: 0.14 U/mg birchwood xylan) with higher efficiency than cellulose substrates (C1: 0.002 U/mg, C2: 0.01 U/mg CMC), and could therefore be considered xylanosomes. Interestingly, the MECs did not bind to insoluble birchwood xylan or Avicel® and did not contain glycosylated proteins, which are common features of cellulosomes. This study is, therefore, important in revealing the presence of MECs that differ from the cellulosome and that may have particular application in industries requiring high xylanase activity, such as the paper and pulp industry. The abundant genetic information available on B. subtilis means that this organism could also be used for genetic engineering of cellulolytic/hemicellulolytic MECs.
- Full Text:
An investigation into the synergistic association between the major Clostridium cellulovorans cellulosomal endoglucanase and two hemicellulases on plant cell wall degradation
- Authors: Beukes, Natasha
- Date: 2008
- Subjects: Clostridium , Cellulose , Hemicellulose , Cellulase , Biomass conversion , Biomass energy -- South Africa , Energy crops -- South Africa , Bagasse -- Biodegradation , Pineapple -- Biodegradation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3968 , http://hdl.handle.net/10962/d1004027 , Clostridium , Cellulose , Hemicellulose , Cellulase , Biomass conversion , Biomass energy -- South Africa , Energy crops -- South Africa , Bagasse -- Biodegradation , Pineapple -- Biodegradation
- Description: The cellulosome is a multimeric enzyme complex that has the ability to metabolise a wide variety of carbonaceous compounds. Cellulosomal composition may vary according to the microbe’s nutritional requirement and allows for the anaerobic degradation of complex substrates. The complex substrates of interest in this research study were sugarcane bagasse and pineapple fibre waste, as they represent two important lignocellulosic, South African agricultural crops. The effective degradation of complex plant biomass wastes may present a valuable source of renewable compounds for the production of a variety of biofuels, for example bioethanol, and a variety of biocomposites of industrial importance. The identification of renewable energy sources for the production of biofuels is becoming increasingly important, as a result of the rapid depletion of the fossil fuels that are traditionally used as energy sources. An effective means of completely degrading lignocellulose biomass still remains elusive due to the complex heterogeneity of the substrate structure, and the fact that the effective degradation of the substrate requires a consortium of enzymes. The cellulosome not only provides a variety of enzymes with varying specificities, but also promote a close proximity between the catalytic components (enzymes). The close proximity between the enzymes promotes the synergistic degradation of complex plant biomass for the production of valuable energy products. Previous synergy studies have focused predominantly on the synergistic associations between cellulases; however, the synergy between hemicellulases has occasionally been documented. This research project established the synergistic associations between two Clostridium cellulovorans hemicellulases that may be incorporated into the cellulosome and a cellulosomal endoglucanase that is conserved in all cellulosomes. This research study indicated that there was indeed a synergistic degradation of the complex plant biomass (sugarcane bagasse and pineapple fibre). The degrees of synergy and the ratio of the enzymes varied between the two complex substrates. The initial degradation of the bagasse required the presence of all the enzymes and proceeded at an enhanced rate under sulphidogenic conditions; however, there was a low production of fermentable sugars. The low quantity of fermentable sugars produced by the degradation of the bagasse may be related to the chemical composition of the substrate. The sugarcane contains a high percentage of lignin forming a protective layer around the holocellulose, thus the glycosidic bonds are shielded extensively from enzymatic attack. In comparison, the initial degradation of the pineapple fibre required the action of hemicellulases, and proceeded at an enhanced rate under sulphidogenic conditions. The initial degradation of the pineapple fibre produced a substantially larger quantity of fermentable sugars in comparison to the bagasse. The higher production of fermentable sugars from the degradation of the pineapple fibre may be explained by the fact that this substrate may have a lower percentage of lignin than the bagasse, thus allowing a larger percentage of the glycosidic bonds to be exposed to enzymatic attack. The data obtained also indicated that the glycosidic bonds from the hemicellulosic components of the pineapple fibre shielded the glycosidic bonds of the cellulose component. The identification of the chemical components of the different substrates may allow for the initial development of an ideal enzyme complex (designer cellulosome) with enzymes in an ideal ratio with optimal synergy that will effectively degrade the complex plant biomass substrate.
- Full Text:
- Authors: Beukes, Natasha
- Date: 2008
- Subjects: Clostridium , Cellulose , Hemicellulose , Cellulase , Biomass conversion , Biomass energy -- South Africa , Energy crops -- South Africa , Bagasse -- Biodegradation , Pineapple -- Biodegradation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3968 , http://hdl.handle.net/10962/d1004027 , Clostridium , Cellulose , Hemicellulose , Cellulase , Biomass conversion , Biomass energy -- South Africa , Energy crops -- South Africa , Bagasse -- Biodegradation , Pineapple -- Biodegradation
- Description: The cellulosome is a multimeric enzyme complex that has the ability to metabolise a wide variety of carbonaceous compounds. Cellulosomal composition may vary according to the microbe’s nutritional requirement and allows for the anaerobic degradation of complex substrates. The complex substrates of interest in this research study were sugarcane bagasse and pineapple fibre waste, as they represent two important lignocellulosic, South African agricultural crops. The effective degradation of complex plant biomass wastes may present a valuable source of renewable compounds for the production of a variety of biofuels, for example bioethanol, and a variety of biocomposites of industrial importance. The identification of renewable energy sources for the production of biofuels is becoming increasingly important, as a result of the rapid depletion of the fossil fuels that are traditionally used as energy sources. An effective means of completely degrading lignocellulose biomass still remains elusive due to the complex heterogeneity of the substrate structure, and the fact that the effective degradation of the substrate requires a consortium of enzymes. The cellulosome not only provides a variety of enzymes with varying specificities, but also promote a close proximity between the catalytic components (enzymes). The close proximity between the enzymes promotes the synergistic degradation of complex plant biomass for the production of valuable energy products. Previous synergy studies have focused predominantly on the synergistic associations between cellulases; however, the synergy between hemicellulases has occasionally been documented. This research project established the synergistic associations between two Clostridium cellulovorans hemicellulases that may be incorporated into the cellulosome and a cellulosomal endoglucanase that is conserved in all cellulosomes. This research study indicated that there was indeed a synergistic degradation of the complex plant biomass (sugarcane bagasse and pineapple fibre). The degrees of synergy and the ratio of the enzymes varied between the two complex substrates. The initial degradation of the bagasse required the presence of all the enzymes and proceeded at an enhanced rate under sulphidogenic conditions; however, there was a low production of fermentable sugars. The low quantity of fermentable sugars produced by the degradation of the bagasse may be related to the chemical composition of the substrate. The sugarcane contains a high percentage of lignin forming a protective layer around the holocellulose, thus the glycosidic bonds are shielded extensively from enzymatic attack. In comparison, the initial degradation of the pineapple fibre required the action of hemicellulases, and proceeded at an enhanced rate under sulphidogenic conditions. The initial degradation of the pineapple fibre produced a substantially larger quantity of fermentable sugars in comparison to the bagasse. The higher production of fermentable sugars from the degradation of the pineapple fibre may be explained by the fact that this substrate may have a lower percentage of lignin than the bagasse, thus allowing a larger percentage of the glycosidic bonds to be exposed to enzymatic attack. The data obtained also indicated that the glycosidic bonds from the hemicellulosic components of the pineapple fibre shielded the glycosidic bonds of the cellulose component. The identification of the chemical components of the different substrates may allow for the initial development of an ideal enzyme complex (designer cellulosome) with enzymes in an ideal ratio with optimal synergy that will effectively degrade the complex plant biomass substrate.
- Full Text:
- «
- ‹
- 1
- ›
- »