Microalgal-bacterial flocs and extracellular polymeric substances for optimum function of integrated algal pond systems
- Authors: Jimoh, Taobat Adekilekun
- Date: 2021-10-29
- Subjects: Flocculation , Extracellular polymeric substances , Water Purification , Sewage Purification Anaerobic treatment , Integrated algae pond systems (IAPS) , Microalgal-bacterial flocs
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191214 , vital:45071 , 10.21504/10962/191214
- Description: Despite the dire state of sanitation infrastructures, water scarcity, and the dwindling reserve of natural resources due to ever-increasing population growth, implementation of a suitable technology that can provide a solution to all these issues continues to be ignored. The integrated algal pond system (IAPS) is a wastewater treatment technology that combines the processes of anaerobic digestion and photosynthetic oxygenation to achieve wastewater treatment and facilitate the recovery of treated water and resources in the form of biogas and microalgal-bacterial biomass. The natural process of bioflocculation through microalgal-bacterial mutualism and production of extracellular polymeric substances (EPS) in high rate algal oxidation ponds (HRAOPs) of an IAPS increases efficiency of wastewater treatment and potentially enhances harvestability and biomass recovery, which could contribute significantly to the successful establishment of a biorefinery. Using a 500 PE pilot-scale IAPS supplied domestic sewage coupled with laboratory experiments, this study investigated the importance and function of in situ EPS production and MaB-floc formation in HRAOP. A metagenomic study revealed the biological components of the biomass or mixed liquor suspended solids (MLSS) produced in HRAOP and showed that the suspended biomass is composed largely of eukaryotes that were dominated by the colonial microalgae Pseudopediastrum sp. and Desmodesmus sp., and a diverse range of prokaryotes including bacteria and cyanobacteria. Dominance, within the bacterial population, by a sulphur-oxidizing bacterium, Thiothrix which comprised up to 80% of the prokaryotes, coincided with a period of poor flocculation and was therefore rationalized to have contributed to bulking and poor biomass settleability. Otherwise, good flocs were formed in the MLSS with settleability up to 95% and, within 1 h. The formation of MaB-flocs appeared to be dependent on EPS concentration of the mixed liquor due to the observed positive correlation between soluble EPS (S-EPS), biomass concentration, and settleability. The contribution and role of MLSS components towards the formation and sustenance of MaB-flocs were further demonstrated in laboratory experiments using pure strains of microalgae, cyanobacteria, and bacteria. Results showed that pure cultures of dominant microalgae in MLSS, Pseudopediastrum sp. and Desmodesmus sp. achieved a rapid 92 and 75% settleability within 3 h. A self-flocculating filamentous cyanobacterium, Leptolyngbya strain ECCN 20BG was isolated, characterized, and shown to achieve 99% settleability within 5 min by forming large tightly aggregated flocs. In further experiments, this strain was found to improve the settleability of MLSS by an average of 20%. Bacterial strains identified as Bacillus strain ECCN 40b, Bacillus strain ECCN 41b, Planococcus strain ECCN 45b, and Exiguobacterium strain ECCN 46b were also observed to produce sticky EPS-like materials in pure cultures that could also contribute to the aggregation of cells in a mixed environment. Given these results, various factors and/or mechanisms that might enhance microbial aggregation and biomass recovery from HRAOP MLSS were identified in this study and include; (1) dominance by larger colonial microalgae prevents disintegration of MaB-flocs and enhances recovery of biomass from MLSS by gravity sedimentation, (2) presence of filamentous cyanobacteria species that can self-flocculate to form an interwoven network of filaments may play an important role in the structural stability and settleability of MaB-flocs in MLSS, and (3) production of EPS to form the matrix or scaffold whereon all microbial components aggregate to develop a microenvironment. Indeed, all forms of EPS, except for that produced by Bacillus strain ECCN 41b, showed bioflocculating property and were able to serve as flocculants for the recovery of Chlorella, an alga known for its poor settleability. A combination of biochemical analyses and FTIR spectroscopy revealed the importance of carbohydrate enrichment of these biopolymers. Carbohydrate concentration in all forms of EPS was between 12 and 41% suggesting that production of these compounds by microbes within the MLSS contributed to MaB-floc formation. EPS extracted from bulk MLSS and EPS produced by Bacillus strains possessed some surface-active properties that were comparable to Triton X-100, indicating potential application in bioremediation and recovery of oil from contaminated soil and water. In particular, EPS generated from Bacillus strain ECCN 41b displayed relatively distinct properties including the quantity produced (> 500 mg/L), increased viscosity, inability to flocculate microalgal cells, a rhamnolipid content of 32%, and a higher surface-activity. Based on these results, Bacillus strain ECCN 41b was rationalized to produce anionic EPS with potential application in metal or oil recovery. In addition to EPS production, the bacteria Planococcus strain ECCN 45b and Exiguobacterium strain ECCN 46b appeared pigmented. Based on partial characterization using UV/Vis spectrophotometry, thin-layer chromatography, FTIR, and NMR, the pigments produced by these two strains appeared to be identical and were tentatively identified as ketocarotenoids. This study successfully demonstrated the importance of EPS production and formation of MaB-flocs in the MLSS from HRAOP of an IAPS treating domestic sewage. It is evident that increased settleability of the biomass does contribute to the reported efficiency of wastewater treatment by IAPS and would reduce both total suspended solids (TSS) and chemical oxygen demand (COD). In addition, demonstration that this biomass contains products of value such as carotenoids and EPS with potential for commercial use strengthens the idea of using IAPS as a platform technology for innovation of the wastewater treatment process to a biorefinery. , Thesis (PhD) -- Faculty of Science, Institute for Environmental Biotechnology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Jimoh, Taobat Adekilekun
- Date: 2021-10-29
- Subjects: Flocculation , Extracellular polymeric substances , Water Purification , Sewage Purification Anaerobic treatment , Integrated algae pond systems (IAPS) , Microalgal-bacterial flocs
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191214 , vital:45071 , 10.21504/10962/191214
- Description: Despite the dire state of sanitation infrastructures, water scarcity, and the dwindling reserve of natural resources due to ever-increasing population growth, implementation of a suitable technology that can provide a solution to all these issues continues to be ignored. The integrated algal pond system (IAPS) is a wastewater treatment technology that combines the processes of anaerobic digestion and photosynthetic oxygenation to achieve wastewater treatment and facilitate the recovery of treated water and resources in the form of biogas and microalgal-bacterial biomass. The natural process of bioflocculation through microalgal-bacterial mutualism and production of extracellular polymeric substances (EPS) in high rate algal oxidation ponds (HRAOPs) of an IAPS increases efficiency of wastewater treatment and potentially enhances harvestability and biomass recovery, which could contribute significantly to the successful establishment of a biorefinery. Using a 500 PE pilot-scale IAPS supplied domestic sewage coupled with laboratory experiments, this study investigated the importance and function of in situ EPS production and MaB-floc formation in HRAOP. A metagenomic study revealed the biological components of the biomass or mixed liquor suspended solids (MLSS) produced in HRAOP and showed that the suspended biomass is composed largely of eukaryotes that were dominated by the colonial microalgae Pseudopediastrum sp. and Desmodesmus sp., and a diverse range of prokaryotes including bacteria and cyanobacteria. Dominance, within the bacterial population, by a sulphur-oxidizing bacterium, Thiothrix which comprised up to 80% of the prokaryotes, coincided with a period of poor flocculation and was therefore rationalized to have contributed to bulking and poor biomass settleability. Otherwise, good flocs were formed in the MLSS with settleability up to 95% and, within 1 h. The formation of MaB-flocs appeared to be dependent on EPS concentration of the mixed liquor due to the observed positive correlation between soluble EPS (S-EPS), biomass concentration, and settleability. The contribution and role of MLSS components towards the formation and sustenance of MaB-flocs were further demonstrated in laboratory experiments using pure strains of microalgae, cyanobacteria, and bacteria. Results showed that pure cultures of dominant microalgae in MLSS, Pseudopediastrum sp. and Desmodesmus sp. achieved a rapid 92 and 75% settleability within 3 h. A self-flocculating filamentous cyanobacterium, Leptolyngbya strain ECCN 20BG was isolated, characterized, and shown to achieve 99% settleability within 5 min by forming large tightly aggregated flocs. In further experiments, this strain was found to improve the settleability of MLSS by an average of 20%. Bacterial strains identified as Bacillus strain ECCN 40b, Bacillus strain ECCN 41b, Planococcus strain ECCN 45b, and Exiguobacterium strain ECCN 46b were also observed to produce sticky EPS-like materials in pure cultures that could also contribute to the aggregation of cells in a mixed environment. Given these results, various factors and/or mechanisms that might enhance microbial aggregation and biomass recovery from HRAOP MLSS were identified in this study and include; (1) dominance by larger colonial microalgae prevents disintegration of MaB-flocs and enhances recovery of biomass from MLSS by gravity sedimentation, (2) presence of filamentous cyanobacteria species that can self-flocculate to form an interwoven network of filaments may play an important role in the structural stability and settleability of MaB-flocs in MLSS, and (3) production of EPS to form the matrix or scaffold whereon all microbial components aggregate to develop a microenvironment. Indeed, all forms of EPS, except for that produced by Bacillus strain ECCN 41b, showed bioflocculating property and were able to serve as flocculants for the recovery of Chlorella, an alga known for its poor settleability. A combination of biochemical analyses and FTIR spectroscopy revealed the importance of carbohydrate enrichment of these biopolymers. Carbohydrate concentration in all forms of EPS was between 12 and 41% suggesting that production of these compounds by microbes within the MLSS contributed to MaB-floc formation. EPS extracted from bulk MLSS and EPS produced by Bacillus strains possessed some surface-active properties that were comparable to Triton X-100, indicating potential application in bioremediation and recovery of oil from contaminated soil and water. In particular, EPS generated from Bacillus strain ECCN 41b displayed relatively distinct properties including the quantity produced (> 500 mg/L), increased viscosity, inability to flocculate microalgal cells, a rhamnolipid content of 32%, and a higher surface-activity. Based on these results, Bacillus strain ECCN 41b was rationalized to produce anionic EPS with potential application in metal or oil recovery. In addition to EPS production, the bacteria Planococcus strain ECCN 45b and Exiguobacterium strain ECCN 46b appeared pigmented. Based on partial characterization using UV/Vis spectrophotometry, thin-layer chromatography, FTIR, and NMR, the pigments produced by these two strains appeared to be identical and were tentatively identified as ketocarotenoids. This study successfully demonstrated the importance of EPS production and formation of MaB-flocs in the MLSS from HRAOP of an IAPS treating domestic sewage. It is evident that increased settleability of the biomass does contribute to the reported efficiency of wastewater treatment by IAPS and would reduce both total suspended solids (TSS) and chemical oxygen demand (COD). In addition, demonstration that this biomass contains products of value such as carotenoids and EPS with potential for commercial use strengthens the idea of using IAPS as a platform technology for innovation of the wastewater treatment process to a biorefinery. , Thesis (PhD) -- Faculty of Science, Institute for Environmental Biotechnology, 2021
- Full Text:
- Date Issued: 2021-10-29
Performance of an integrated algal pond for treatment of domestic sewage: a process audit
- Authors: Dube, Anele
- Date: 2020
- Subjects: Water -- Purification , Sewage -- Purification -- Anaerobic treatment , Algae -- Biotechnology , Waste disposal -- South Africa , Integrated algae pond systems (IAPS)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167043 , vital:41432
- Description: Integrated algae pond systems (IAPS) are energy efficient, robust, passive systems that use the principles of fermentation, photosynthesis and microbial metabolism to remediate wastewater, producing a good quality effluent with reuse potential. In addition to the treatment of wastewater, IAPS have the ability to generate two additional product streams viz. biogas and biomass. The latter adds to the attractiveness of the system. However, the implementation of this technology, like many passive systems, has remained limited at a commercial scale, and the inclination is still towards grey technologies. The aim of this research was to investigate the capabilities and potential of a demonstration-scale IAPS and use results obtained to establish a process audit framework. The aspects considered for the audit included performance efficiency, effluent water quality, biomass composition, quantity and productivity within the ponds, and cost analysis of operation and maintenance over a 9-year period. Plant performance was closely monitored during the course of the study and this led to a review of previously adopted plant management strategies. Troubleshooting exercises were also carried out when plant performance declined. Results showed that IAPS efficiently reduced standard water parameters with the exception of pH, dissolved oxygen, and nitrate whose values increased from raw influent to final effluent. The following water quality parameters were established for the final effluent: total suspended solids 55 ± 7.1 mg. L-1 (n = 28); chemical oxygen demand 94.1 ± 10.6 mg. L-1 (n = 28) (after removal of algae); pH 9.9 ± 0.01 (n = 26); ammonium nitrogen 1.7 ± 0.3 mg. L-1 (n = 25); nitrate 3.3 ± 0.6 mg. L-1 (n = 25); ortho-phosphate 1.6 ± 0.2 mg. L-1 (n = 25); electrical conductivity 98.7 ± 2.0 mS m-1 (n = 26) and faecal coliforms (per 100 mL) 1482.6 ± 636.0 (n = 24). The final effluent measured consistently high chemical oxygen demand and total suspended solids, however close analysis showed that total suspended solids could be controlled by increasing the frequency of removal of settled biomass within the settling ponds. Biomass produced contained microalgae, bacteria, metazoa, and protozoa. The biomass productivity achieved was as high as 130.6 kg ha-1 d-1; however, about 33% was lost to the final effluent due to inadequate settling. Results obtained during the course of this study and outcomes of earlier work on IAPS are taken as the baseline to determine parameters needed for the development of the process audit framework. Techniques utilised to derive the blue print process audit protocol for IAPS included a turtle diagram, a flow diagram and a checklist. Attention to plant management proved vital in determining overall performance. Cost, including operating and maintenance, of treating water using the demonstration scale system on a per person equivalent per year basis was determined as ZAR 123.87 (where, ZAR to USD = 0.07).
- Full Text:
- Date Issued: 2020
- Authors: Dube, Anele
- Date: 2020
- Subjects: Water -- Purification , Sewage -- Purification -- Anaerobic treatment , Algae -- Biotechnology , Waste disposal -- South Africa , Integrated algae pond systems (IAPS)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167043 , vital:41432
- Description: Integrated algae pond systems (IAPS) are energy efficient, robust, passive systems that use the principles of fermentation, photosynthesis and microbial metabolism to remediate wastewater, producing a good quality effluent with reuse potential. In addition to the treatment of wastewater, IAPS have the ability to generate two additional product streams viz. biogas and biomass. The latter adds to the attractiveness of the system. However, the implementation of this technology, like many passive systems, has remained limited at a commercial scale, and the inclination is still towards grey technologies. The aim of this research was to investigate the capabilities and potential of a demonstration-scale IAPS and use results obtained to establish a process audit framework. The aspects considered for the audit included performance efficiency, effluent water quality, biomass composition, quantity and productivity within the ponds, and cost analysis of operation and maintenance over a 9-year period. Plant performance was closely monitored during the course of the study and this led to a review of previously adopted plant management strategies. Troubleshooting exercises were also carried out when plant performance declined. Results showed that IAPS efficiently reduced standard water parameters with the exception of pH, dissolved oxygen, and nitrate whose values increased from raw influent to final effluent. The following water quality parameters were established for the final effluent: total suspended solids 55 ± 7.1 mg. L-1 (n = 28); chemical oxygen demand 94.1 ± 10.6 mg. L-1 (n = 28) (after removal of algae); pH 9.9 ± 0.01 (n = 26); ammonium nitrogen 1.7 ± 0.3 mg. L-1 (n = 25); nitrate 3.3 ± 0.6 mg. L-1 (n = 25); ortho-phosphate 1.6 ± 0.2 mg. L-1 (n = 25); electrical conductivity 98.7 ± 2.0 mS m-1 (n = 26) and faecal coliforms (per 100 mL) 1482.6 ± 636.0 (n = 24). The final effluent measured consistently high chemical oxygen demand and total suspended solids, however close analysis showed that total suspended solids could be controlled by increasing the frequency of removal of settled biomass within the settling ponds. Biomass produced contained microalgae, bacteria, metazoa, and protozoa. The biomass productivity achieved was as high as 130.6 kg ha-1 d-1; however, about 33% was lost to the final effluent due to inadequate settling. Results obtained during the course of this study and outcomes of earlier work on IAPS are taken as the baseline to determine parameters needed for the development of the process audit framework. Techniques utilised to derive the blue print process audit protocol for IAPS included a turtle diagram, a flow diagram and a checklist. Attention to plant management proved vital in determining overall performance. Cost, including operating and maintenance, of treating water using the demonstration scale system on a per person equivalent per year basis was determined as ZAR 123.87 (where, ZAR to USD = 0.07).
- Full Text:
- Date Issued: 2020
Water quality, biomass and extracellular polymeric substances in an integrated algae pond system
- Authors: Jimoh, Taobat Adekilekun
- Date: 2018
- Subjects: Water -- Purification , Sewage -- Purification -- Anaerobic treatment , Sewage lagoons , Sewage disposal plants , ASPAM model (Acid mine drainage) , Integrated algae pond systems (IAPS)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/57307 , vital:26871
- Description: Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. Although, IAPS as a technology process offers many advantages including efficient and simultaneous N and P removal, no requirement for additional chemicals, O2 generation, CO2 mitigation, and a biomass with potential for valorization, a lack of technological advancement and the need for large land area, has limited the reach of this technology at industrial scale. In mitigation, peroxonation was introduced as a tertiary treatment unit and its effect on COD and TSS of IAPS treated water investigated. An effort was made to characterize the soluble but persistent COD in IAPS treated water and, productivity of the HRAOP mixed liquor was investigated to gain insight into the potential use of this biomass. Results show that peroxone treatment effectively reduced COD, TSS, and nutrient load of IAPS water without any significant impact on land area requirement. Indeed, summary data describing the effect of peroxone on quality of IAPS-treated water confirmed that it complies with the general limit values for either irrigation or discharge into a water resource that is not a listed water resource for volumes up to 2 ML of treated wastewater on any given day. Extraction followed by FT-IR spectroscopy was used to confirm albeit tentatively, the identity of the soluble but persistent COD in IAPS treated water as MaB-floc EPS. Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. A relationship between photosynthesis and EPS production was established by quantification of the EPS following exposure of MaB-flocs to either continuous light or darkness. Several novel strains of bacteria were isolated from HRAOP mixed liquor and 16S ribosomal genomic sequence analysis resulted in the molecular characterization of Planococcus maitriensis strain ECCN 45b. This is the first report of Planococcus maitriensis from a wastewater treatment process. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning and evening were monitored and revealed that MLSS is composed of microalgae and bacteria but not fungi. Concentration varied from 77 mg L-1 in September (winter) to 285 mg L-1 in November (spring); pond productivity increased from 5.8 g m-2 d-1 (winter) to 21.5 g m-2 d-1 (spring); and, irrespective of MLSS concentration in late afternoon, approximately 39% was lost overnight, which presumably occurred due to passive removal by the algae settling pond. The outcomes of this research are discussed in terms of the quality of treated water, and the further development of IAPS as a platform technology for establishing a biorefinery within the wastewater treatment sector.
- Full Text:
- Date Issued: 2018
- Authors: Jimoh, Taobat Adekilekun
- Date: 2018
- Subjects: Water -- Purification , Sewage -- Purification -- Anaerobic treatment , Sewage lagoons , Sewage disposal plants , ASPAM model (Acid mine drainage) , Integrated algae pond systems (IAPS)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/57307 , vital:26871
- Description: Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. Although, IAPS as a technology process offers many advantages including efficient and simultaneous N and P removal, no requirement for additional chemicals, O2 generation, CO2 mitigation, and a biomass with potential for valorization, a lack of technological advancement and the need for large land area, has limited the reach of this technology at industrial scale. In mitigation, peroxonation was introduced as a tertiary treatment unit and its effect on COD and TSS of IAPS treated water investigated. An effort was made to characterize the soluble but persistent COD in IAPS treated water and, productivity of the HRAOP mixed liquor was investigated to gain insight into the potential use of this biomass. Results show that peroxone treatment effectively reduced COD, TSS, and nutrient load of IAPS water without any significant impact on land area requirement. Indeed, summary data describing the effect of peroxone on quality of IAPS-treated water confirmed that it complies with the general limit values for either irrigation or discharge into a water resource that is not a listed water resource for volumes up to 2 ML of treated wastewater on any given day. Extraction followed by FT-IR spectroscopy was used to confirm albeit tentatively, the identity of the soluble but persistent COD in IAPS treated water as MaB-floc EPS. Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. A relationship between photosynthesis and EPS production was established by quantification of the EPS following exposure of MaB-flocs to either continuous light or darkness. Several novel strains of bacteria were isolated from HRAOP mixed liquor and 16S ribosomal genomic sequence analysis resulted in the molecular characterization of Planococcus maitriensis strain ECCN 45b. This is the first report of Planococcus maitriensis from a wastewater treatment process. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning and evening were monitored and revealed that MLSS is composed of microalgae and bacteria but not fungi. Concentration varied from 77 mg L-1 in September (winter) to 285 mg L-1 in November (spring); pond productivity increased from 5.8 g m-2 d-1 (winter) to 21.5 g m-2 d-1 (spring); and, irrespective of MLSS concentration in late afternoon, approximately 39% was lost overnight, which presumably occurred due to passive removal by the algae settling pond. The outcomes of this research are discussed in terms of the quality of treated water, and the further development of IAPS as a platform technology for establishing a biorefinery within the wastewater treatment sector.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »