The development of an ionospheric storm-time index for the South African region
- Authors: Tshisaphungo, Mpho
- Date: 2021-04
- Subjects: Ionospheric storms -- South Africa , Global Positioning System , Neural networks (Computer science) , Regression analysis , Ionosondes , Auroral electrojet , Geomagnetic indexes , Magnetic storms -- South Africa
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/178409 , vital:42937 , 10.21504/10962/178409
- Description: This thesis presents the development of a regional ionospheric storm-time model which forms the foundation of an index to provide a quick view of the ionospheric storm effects over South African mid-latitude region. The model is based on the foF2 measurements from four South African ionosonde stations. The data coverage for the model development over Grahamstown (33.3◦S, 26.5◦E), Hermanus (34.42◦S, 19.22◦E), Louisvale (28.50◦S, 21.20◦E), and Madimbo (22.39◦S, 30.88◦E) is 1996-2016, 2009-2016, 2000-2016, and 2000-2016 respectively. Data from the Global Positioning System (GPS) and radio occultation (RO) technique were used during validation. As the measure of either positive or negative storm effect, the variation of the critical frequency of the F2 layer (foF2) from the monthly median values (denoted as _foF2) is modeled. The modeling of _foF2 is based on only storm time data with the criteria of Dst 6 -50 nT and Kp > 4. The modeling methods used in the study were artificial neural network (ANN), linear regression (LR) and polynomial functions. The approach taken was to first test the modeling techniques on a single station before expanding the study to cover the regional aspect. The single station modeling was developed based on ionosonde data over Grahamstown. The inputs for the model which related to seasonal variation, diurnal variation, geomagnetic activity and solar activity were considered. For the geomagnetic activity, three indices namely; the symmetric disturbance in the horizontal component of the Earth’s magnetic field (SYM − H), the Auroral Electrojet (AE) index and local geomagnetic index A, were included as inputs. The performance of a single station model revealed that, of the three geomagnetic indices, SYM − H index has the largest contribution of 41% and 54% based on ANN and LR techniques respectively. The average correlation coefficients (R) for both ANN and LR models was 0.8, when validated during the selected storms falling within the period of model development. When validated using storms that fall outside the period of model development, the model gave R values of 0.6 and 0.5 for ANN and LR respectively. In addition, the GPS total electron content (TEC) derived measurements were used to estimate foF2 data. This is because there are more GPS receivers than ionosonde locations and the utilisation of this data increases the spatial coverage of the regional model. The estimation of foF2 from GPS TEC was done at GPS-ionosonde co-locations using polynomial functions. The average R values of 0.69 and 0.65 were obtained between actual and derived _foF2 over the co-locations and other GPS stations respectively. Validation of GPS TEC derived foF2 with RO data over regions out of ionospheric pierce points coverage with respect to ionosonde locations gave R greater than 0.9 for the selected storm period of 4-8 August 2011. The regional storm-time model was then developed based on the ANN technique using the four South African ionosonde stations. The maximum and minimum R values of 0.6 and 0.5 were obtained over ionosonde and GPS locations respectively. This model forms the basis towards the regional ionospheric storm-time index. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2021
- Full Text:
An analysis of ionospheric response to geomagnetic disturbances over South Africa and Antarctica
- Authors: Ngwira, Chigomezyo Mudala
- Date: 2012
- Subjects: Geomagnetism -- South Africa , Geomagnetism -- Antarctica , Ionospheric storms -- South Africa , Ionospheric storms -- Antarctica
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5534 , http://hdl.handle.net/10962/d1012957
- Description: The ionosphere is of practical importance for satellite-based communication and navigation systems due to its variable refractive nature which affects the propagation of trans-ionospheric radio signals. This thesis reports on the first attempt to investigate the mechanisms responsible for the generation of positive ionospheric storm effects over mid-latitude South Africa. The storm response on 15 May 2005 was associated with equatorward neutral winds and the passage of travelling ionospheric disturbances (TIDs). The two TIDs reported in this thesis propagated with average velocities of ∼438 m/s and ∼515 m/s respectively. The velocity of the first TID (i.e. 438 m/s) is consistent with the velocities calculated in other studies for the same storm event. In a second case study, the positive storm enhancement on both 25 and 27 July 2004 lasted for more than 7 hours, and were classified as long-duration positive ionospheric storm effects. It has been suggested that the long-duration positive storm effects could have been caused by large-scale thermospheric wind circulation and enhanced equatorward neutral winds. These processes were in turn most likely to have been driven by enhanced and sustained energy input in the high-latitude ionosphere due to Joule heating and particle energy injection. This is evident by the prolonged high-level geomagnetic activity on both 25 and 27 July. This thesis also reports on the phase scintillation investigation at the South African Antarctic polar research station during solar minimum conditions. The multi-instrument approach that was used shows that the scintillation events were associated with auroral electron precipitation and that substorms play an essential role in the production of scintillation in the high latitudes. Furthermore, the investigation reveals that external energy injection into the ionosphere is necessary for the development of high-latitude irregularities which produce scintillation. Finally, this thesis highlights inadequate data resources as one of the major shortcomings to be addressed in order to fully understand and distinguish between the various ionospheric storm drivers over the Southern Africa mid-latitude region. The results presented in this thesis on the ionospheric response during geomagnetic storms provide essential information to direct further investigation aimed at developing this emerging field of study in South Africa.
- Full Text: