A structural study of the capsular antigen of Klebsiella serotype K43
- Authors: Aereboe, Michael
- Date: 1993
- Subjects: Polysaccharides , Klebsiella , Antigens , Enterobacteriaceae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3740 , http://hdl.handle.net/10962/d1003218 , Polysaccharides , Klebsiella , Antigens , Enterobacteriaceae
- Description: This thesis presents a detailed chemical and spectroscopic determination of the capsular, polysaccharide K-antigen isolated from the Klebsiella bacterium, serotype K43 (culture #2482). The repeating unit of the capsular polysaccharide was found to be of the "3 + 2" repeating unit type. A uronic acid was found as part of a disaccharide side chain and the main chain of the polysaccharide was found to be composed of a neutral trisaccharide of mannose and galactose. The work forms part of an ongoing research interest in bacterial polysaccharides of this laboratory and now completes the structural elucidation of all the Klebsiella K-antigens, bar three antigens which were originally assigned to other laboratories. These data together with the respective serological characteristics of each serotype are available to the molecular biologist, and may result in the production of: vaccine(s) against Klebsiella infections, diagnostic products and novel carrier molecules enabling targeted drug delivery.
- Full Text:
- Date Issued: 1993
- Authors: Aereboe, Michael
- Date: 1993
- Subjects: Polysaccharides , Klebsiella , Antigens , Enterobacteriaceae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3740 , http://hdl.handle.net/10962/d1003218 , Polysaccharides , Klebsiella , Antigens , Enterobacteriaceae
- Description: This thesis presents a detailed chemical and spectroscopic determination of the capsular, polysaccharide K-antigen isolated from the Klebsiella bacterium, serotype K43 (culture #2482). The repeating unit of the capsular polysaccharide was found to be of the "3 + 2" repeating unit type. A uronic acid was found as part of a disaccharide side chain and the main chain of the polysaccharide was found to be composed of a neutral trisaccharide of mannose and galactose. The work forms part of an ongoing research interest in bacterial polysaccharides of this laboratory and now completes the structural elucidation of all the Klebsiella K-antigens, bar three antigens which were originally assigned to other laboratories. These data together with the respective serological characteristics of each serotype are available to the molecular biologist, and may result in the production of: vaccine(s) against Klebsiella infections, diagnostic products and novel carrier molecules enabling targeted drug delivery.
- Full Text:
- Date Issued: 1993
Chemical and spectroscopic studies of the capsular polysaccharides of some klebsiella and escherichia coli serotypes
- Authors: Stanley, Shawn Mark Ross
- Date: 1990
- Subjects: Polysaccharides , Klebsiella , Escherichia
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3736 , http://hdl.handle.net/10962/d1001525
- Description: The work described in this thesis forms part of an international programme concerned with the structure elucidation of the capsular antigens of some Enterobacteriaceae. Many of the Klebsiella and some of the Escherichia coli are pathogenic to man and, hence, they are of interest. The virulence of bacteria is a multifactorial phenomenon, in which characteristic traits of bacteria and their hosts play comparable and complementary roles. It is accepted that pathogens are more virulent when encapsulated, because, nearly all disease causing bacteria have a capsule when freshly isolated from the host. This increase in pathogenicity is related, in part, to the capsular polysaccharides' ability to avoid or attenuate the host defence mechanisms. In the majority of cases the protective aspects of the capsule are overcome in the latter stages of infection when the formation of specific antibodies by the host has occurred. However there are situations in which an immune state of the infected host is virtually never reached, and susceptiblity to the infecting bacteria is maintained even in the advanced stage of an infection. Explanation of this phenomenon becomes possible by analysing the structure of the polysaccharides. The inability of the host to raise an immune response to the capsule may be because the structure of the polysaccharide is similar or identical to the host's carbohydrates. The serological and pathogenic relatedness of encapsulated E. coli and Klebsiella, to the encapsulated strains of other genera, is based on structural identity or similarity of the respective capsules. Capsular polysaccharides are analysed by both chemical and instrumental methods, and, at present, nuclear magnetic resonance spectroscopy is the most important analytical technique
- Full Text:
- Date Issued: 1990
- Authors: Stanley, Shawn Mark Ross
- Date: 1990
- Subjects: Polysaccharides , Klebsiella , Escherichia
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3736 , http://hdl.handle.net/10962/d1001525
- Description: The work described in this thesis forms part of an international programme concerned with the structure elucidation of the capsular antigens of some Enterobacteriaceae. Many of the Klebsiella and some of the Escherichia coli are pathogenic to man and, hence, they are of interest. The virulence of bacteria is a multifactorial phenomenon, in which characteristic traits of bacteria and their hosts play comparable and complementary roles. It is accepted that pathogens are more virulent when encapsulated, because, nearly all disease causing bacteria have a capsule when freshly isolated from the host. This increase in pathogenicity is related, in part, to the capsular polysaccharides' ability to avoid or attenuate the host defence mechanisms. In the majority of cases the protective aspects of the capsule are overcome in the latter stages of infection when the formation of specific antibodies by the host has occurred. However there are situations in which an immune state of the infected host is virtually never reached, and susceptiblity to the infecting bacteria is maintained even in the advanced stage of an infection. Explanation of this phenomenon becomes possible by analysing the structure of the polysaccharides. The inability of the host to raise an immune response to the capsule may be because the structure of the polysaccharide is similar or identical to the host's carbohydrates. The serological and pathogenic relatedness of encapsulated E. coli and Klebsiella, to the encapsulated strains of other genera, is based on structural identity or similarity of the respective capsules. Capsular polysaccharides are analysed by both chemical and instrumental methods, and, at present, nuclear magnetic resonance spectroscopy is the most important analytical technique
- Full Text:
- Date Issued: 1990
- «
- ‹
- 1
- ›
- »