Sequence, structure, dynamics, and substrate specificity analyses of bacterial Glycoside Hydrolase 1 enzymes from several activities
- Authors: Veldman, Wayde Michael
- Date: 2022-04-08
- Subjects: Glycosidases , Bioinformatics , Molecular dynamics , Ligands (Biochemistry) , Enzymes , Ligand binding (Biochemistry) , Sequence alignment (Bioinformatics) , Structural bioinformatics
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/233805 , vital:50129 , DOI 10.21504/10962/233810
- Description: Glycoside hydrolase 1 (GH1) enzymes are a ubiquitous family of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. Despite their conserved catalytic domain, these enzymes have many different enzyme activities and/or substrate specificities as a change of only a few residues in the active site can alter their function. Most GH1 active site residues are situated in loop regions, and it is known that enzymes are more likely to develop new functions (broad specificity) if they possess an active site with a high proportion of loops. Furthermore, the GH1 active site consists of several subsites and cooperative binding makes the binding affinity of sites difficult to measure because the properties of one subsite are influenced by the binding of the other subsites. Extensive knowledge of protein-ligand interactions is critical to the comprehension of biology at the molecular level. However, the structural determinants and molecular details of GH1 ligand specificity and affinity are very broad, highly complex, not well understood, and therefore still need to be clarified. The aim of this study was to computationally characterise the activity of three newly solved GH1 crystallographic structures sent to us by our collaborators, and to provide evidence for their ligand-binding specificities. In addition, the differences in structural and biochemical contributions to enzyme specificity and/or function between different GH1 activities/enzymes was assessed, and the sequence/structure/function relationship of several activities of GH1 enzymes was analysed and compared. To accomplish the research aims, sequence analyses involving sequence identity, phylogenetics, and motif discovery were performed. As protein structure is more conserved than sequence, the discovered motifs were mapped to 3D structures for structural analysis and comparisons. To obtain information on enzyme mechanism or mode of action, as well as structure-function relationship, computational methods such as docking, molecular dynamics, binding free energy calculations, and essential dynamics were implemented. These computational approaches can provide information on the active site, binding residues, protein-ligand interactions, binding affinity, conformational change, and most structural or dynamic elements that play a role in enzyme function. The three new structures received from our collaborators are the first GH1 crystallographic structures from Bacillus licheniformis ever determined. As phospho-glycoside compounds were unavailable for purchase for use in activity assays, and as the active sites of the structures were absent of ligand, in silico docking and MD simulations were performed to provide evidence for their GH1 activities and substrate specificities. First though, the amino acid sequences of all known characterised bacterial GH1 enzymes were retrieved from the CAZy database and compared to the sequences of the three new B. licheniformis crystallographic structures which provided evidence of the putative 6Pβ-glucosidase activity of enzyme BlBglH, and dual 6Pβ-glucosidase/6Pβ-galactosidase (dual-phospho) activity of enzymes BlBglB and BlBglC. As all three enzymes were determined to be putative 6Pβ-glycosidase activity enzymes, much of the thesis focused on the overall analysis and comparison of the 6Pβ-glucosidase, 6Pβ-galactosidase, and dual-phospho activities that make up the 6Pβ-glycosidases. The 6Pβ-glycosidase active site residues were identified through consensus of binding interactions using all known 6Pβ-glycosidase PDB structures complexed complete ligand substrates. With regards to the 6Pβ-glucosidase activity, it was found that the L8b loop is longer and forms extra interactions with the L8a loop likely leading to increased L8 loop rigidity which would prevent the displacement of residue Ala423 ensuring a steric clash with galactoconfigured ligands and may engender substrate specificity for gluco-configured ligands only. Also, during molecular dynamics simulations using enzyme BlBglH (6Pβ-glucosidase activity), it was revealed that the favourable binding of substrate stabilises the loops that surround and make up the enzyme active site. Using the BlBglC (dual-phospho activity) enzyme structure with either galacto- (PNP6Pgal) or gluco-configured (PNP6Pglc) ligands, MD simulations in triplicate revealed important details of the broad specificity of dual-phospho activity enzymes. The ligand O4 hydroxyl position is the only difference between PNP6Pgal and PNP6Pgal, and it was found that residues Gln23 and Trp433 bind strongly to the ligand O3 hydroxyl group in the PNP6Pgal-enzyme complex, but to the ligand O4 hydroxyl group in the PNP6Pglc-enzyme complex. Also, His124 formed many hydrogen bonds with the PNP6Pgal O3 hydroxyl group but had none with PNP6Pglc. Alternatively, residues Tyr173, Tyr301, Gln302 and Thr321 formed hydrogen bonds with PNP6Pglc but not PNP6Pgal. Lastly, using multiple 3D structures from various GH1 activities, a large network of conserved interactions between active site residues (and other important residues) was uncovered, which most likely stabilise the loop regions that contain these residues, helping to retain their positions needed for binding molecules. Alternatively, there exists several differing residue-residue interactions when comparing each of the activities which could contribute towards individual activity substrate specificity by causing slightly different overall structure and malleability of the active site. Altogether, the findings in this thesis shed light on the function, mechanisms, dynamics, and ligand-binding of GH1 enzymes – particularly of the 6Pβ-glycosidase activities. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Authors: Veldman, Wayde Michael
- Date: 2022-04-08
- Subjects: Glycosidases , Bioinformatics , Molecular dynamics , Ligands (Biochemistry) , Enzymes , Ligand binding (Biochemistry) , Sequence alignment (Bioinformatics) , Structural bioinformatics
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/233805 , vital:50129 , DOI 10.21504/10962/233810
- Description: Glycoside hydrolase 1 (GH1) enzymes are a ubiquitous family of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. Despite their conserved catalytic domain, these enzymes have many different enzyme activities and/or substrate specificities as a change of only a few residues in the active site can alter their function. Most GH1 active site residues are situated in loop regions, and it is known that enzymes are more likely to develop new functions (broad specificity) if they possess an active site with a high proportion of loops. Furthermore, the GH1 active site consists of several subsites and cooperative binding makes the binding affinity of sites difficult to measure because the properties of one subsite are influenced by the binding of the other subsites. Extensive knowledge of protein-ligand interactions is critical to the comprehension of biology at the molecular level. However, the structural determinants and molecular details of GH1 ligand specificity and affinity are very broad, highly complex, not well understood, and therefore still need to be clarified. The aim of this study was to computationally characterise the activity of three newly solved GH1 crystallographic structures sent to us by our collaborators, and to provide evidence for their ligand-binding specificities. In addition, the differences in structural and biochemical contributions to enzyme specificity and/or function between different GH1 activities/enzymes was assessed, and the sequence/structure/function relationship of several activities of GH1 enzymes was analysed and compared. To accomplish the research aims, sequence analyses involving sequence identity, phylogenetics, and motif discovery were performed. As protein structure is more conserved than sequence, the discovered motifs were mapped to 3D structures for structural analysis and comparisons. To obtain information on enzyme mechanism or mode of action, as well as structure-function relationship, computational methods such as docking, molecular dynamics, binding free energy calculations, and essential dynamics were implemented. These computational approaches can provide information on the active site, binding residues, protein-ligand interactions, binding affinity, conformational change, and most structural or dynamic elements that play a role in enzyme function. The three new structures received from our collaborators are the first GH1 crystallographic structures from Bacillus licheniformis ever determined. As phospho-glycoside compounds were unavailable for purchase for use in activity assays, and as the active sites of the structures were absent of ligand, in silico docking and MD simulations were performed to provide evidence for their GH1 activities and substrate specificities. First though, the amino acid sequences of all known characterised bacterial GH1 enzymes were retrieved from the CAZy database and compared to the sequences of the three new B. licheniformis crystallographic structures which provided evidence of the putative 6Pβ-glucosidase activity of enzyme BlBglH, and dual 6Pβ-glucosidase/6Pβ-galactosidase (dual-phospho) activity of enzymes BlBglB and BlBglC. As all three enzymes were determined to be putative 6Pβ-glycosidase activity enzymes, much of the thesis focused on the overall analysis and comparison of the 6Pβ-glucosidase, 6Pβ-galactosidase, and dual-phospho activities that make up the 6Pβ-glycosidases. The 6Pβ-glycosidase active site residues were identified through consensus of binding interactions using all known 6Pβ-glycosidase PDB structures complexed complete ligand substrates. With regards to the 6Pβ-glucosidase activity, it was found that the L8b loop is longer and forms extra interactions with the L8a loop likely leading to increased L8 loop rigidity which would prevent the displacement of residue Ala423 ensuring a steric clash with galactoconfigured ligands and may engender substrate specificity for gluco-configured ligands only. Also, during molecular dynamics simulations using enzyme BlBglH (6Pβ-glucosidase activity), it was revealed that the favourable binding of substrate stabilises the loops that surround and make up the enzyme active site. Using the BlBglC (dual-phospho activity) enzyme structure with either galacto- (PNP6Pgal) or gluco-configured (PNP6Pglc) ligands, MD simulations in triplicate revealed important details of the broad specificity of dual-phospho activity enzymes. The ligand O4 hydroxyl position is the only difference between PNP6Pgal and PNP6Pgal, and it was found that residues Gln23 and Trp433 bind strongly to the ligand O3 hydroxyl group in the PNP6Pgal-enzyme complex, but to the ligand O4 hydroxyl group in the PNP6Pglc-enzyme complex. Also, His124 formed many hydrogen bonds with the PNP6Pgal O3 hydroxyl group but had none with PNP6Pglc. Alternatively, residues Tyr173, Tyr301, Gln302 and Thr321 formed hydrogen bonds with PNP6Pglc but not PNP6Pgal. Lastly, using multiple 3D structures from various GH1 activities, a large network of conserved interactions between active site residues (and other important residues) was uncovered, which most likely stabilise the loop regions that contain these residues, helping to retain their positions needed for binding molecules. Alternatively, there exists several differing residue-residue interactions when comparing each of the activities which could contribute towards individual activity substrate specificity by causing slightly different overall structure and malleability of the active site. Altogether, the findings in this thesis shed light on the function, mechanisms, dynamics, and ligand-binding of GH1 enzymes – particularly of the 6Pβ-glycosidase activities. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
Application of computer-aided drug design for identification of P. falciparum inhibitors
- Authors: Diallo, Bakary N’tji
- Date: 2021-10-29
- Subjects: Plasmodium falciparum , Malaria -- Chemotherapy , Molecular dynamics , Antimalarials , Cheminformatics , Drug development , Ligand binding (Biochemistry) , Plasmodium falciparum1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) , South African Natural Compounds Database
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192798 , vital:45265 , 10.21504/10962/192798
- Description: Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in Chinese medical records, and later in other civilizations. It has claimed human lives to such an extent that there are a notable associated socio-economic consequences. Currently, according to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as artemisinin combination therapy, has been and continues to be the work horse in the fight against the disease, together with seasonal malaria chemoprevention and the use of insecticides. Natural products such as quinine and artemisinin are particularly important in terms of their antimalarial activity. The emphasis in current chemotherapy research is the need for time and cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries increasingly becoming certified malaria free, a stalling trend has been observed in the past five years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains a major health concern. Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration of malarial targets through a proteome scale screening on 36 targets using multiple metrics to account for the multi-objective nature of drug discovery. The continuous growth of structural data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of antimalarials in the context of resistance. This pipeline further integrates a complex ranking for better drug-target selectivity, and normalization strategies to overcome docking scoring function bias. The different metrics, ranking, normalization strategies and their combinations were first assessed using their mean ranking error (MRE). A version combining all metrics was used to select 36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed antiplasmodial activity with IC50 2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only fingolimod was found to be not safe with respect to human cell viability. These compounds were predicted active on different molecular targets, abiraterone was predicted to interact with a putative liver-stage essential target, hence promising as a transmission-blocking agent. The pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective approaches. Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were used. Later ranking with an exponential consensus strategy was included. Selected hits were further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and pharmacodynamic properties and may also be promising for lead optimization. A combined analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as exploitable for compound optimization. Finally, we updated the SANCDB library with new NPs and their commercially available analogs as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 compounds and the database is integrated to Mcule and Molport APIs for analogs automatic update. The new set may contribute to virtual screening and to antimalarials as the most effective ones have NP origin. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Authors: Diallo, Bakary N’tji
- Date: 2021-10-29
- Subjects: Plasmodium falciparum , Malaria -- Chemotherapy , Molecular dynamics , Antimalarials , Cheminformatics , Drug development , Ligand binding (Biochemistry) , Plasmodium falciparum1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) , South African Natural Compounds Database
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192798 , vital:45265 , 10.21504/10962/192798
- Description: Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in Chinese medical records, and later in other civilizations. It has claimed human lives to such an extent that there are a notable associated socio-economic consequences. Currently, according to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as artemisinin combination therapy, has been and continues to be the work horse in the fight against the disease, together with seasonal malaria chemoprevention and the use of insecticides. Natural products such as quinine and artemisinin are particularly important in terms of their antimalarial activity. The emphasis in current chemotherapy research is the need for time and cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries increasingly becoming certified malaria free, a stalling trend has been observed in the past five years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains a major health concern. Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration of malarial targets through a proteome scale screening on 36 targets using multiple metrics to account for the multi-objective nature of drug discovery. The continuous growth of structural data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of antimalarials in the context of resistance. This pipeline further integrates a complex ranking for better drug-target selectivity, and normalization strategies to overcome docking scoring function bias. The different metrics, ranking, normalization strategies and their combinations were first assessed using their mean ranking error (MRE). A version combining all metrics was used to select 36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed antiplasmodial activity with IC50 2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only fingolimod was found to be not safe with respect to human cell viability. These compounds were predicted active on different molecular targets, abiraterone was predicted to interact with a putative liver-stage essential target, hence promising as a transmission-blocking agent. The pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective approaches. Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were used. Later ranking with an exponential consensus strategy was included. Selected hits were further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and pharmacodynamic properties and may also be promising for lead optimization. A combined analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as exploitable for compound optimization. Finally, we updated the SANCDB library with new NPs and their commercially available analogs as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 compounds and the database is integrated to Mcule and Molport APIs for analogs automatic update. The new set may contribute to virtual screening and to antimalarials as the most effective ones have NP origin. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
In silico identification of selective novel hits against the active site of wild type mycobacterium tuberculosis pyrazinamidase and its mutants
- Authors: Gowo, Prudence
- Date: 2021-04
- Subjects: Mycobacterium tuberculosis , Pyrazinamide , Multidrug resistance , Antitubercular agents , Molecular dynamics , Hydrogen bonding , Ligand binding (Biochemistry) , Dynamic Residue Network
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/178007 , vital:42898
- Description: The World Health Organization declared Tuberculosis a global health emergency and has set a goal to eradicate it by 2035. However, effective treatment and control of the disease is being hindered by the emerging Multi-Drug Resistant and Extensively Drug Resistant strains on the most effective first line prodrug, Pyrazinamide (PZA). Studies have shown that the main cause of PZA resistance is due to mutations in the pncA gene that codes for the target protein Pyrazinamidase (PZase). Therefore, this study aimed to identify novel drug compounds that bind to the active site of wild type PZase and study the dynamics of these potential anti-TB drugs in the mutant systems of PZase. This approach will aid in identifying drugs that may be repurposed for TB therapy and/or designed to counteract PZA resistance. This was achieved by screening 2089 DrugBank compounds against the whole wild type (WT) PZase protein in molecular docking using AutoDOCK4.2. Compound screening based on docking binding energy, hydrogen bonds, molecular weight and active site proximity identified 47 compounds meeting all the set selection criteria. The stability of these compounds were analysed in Molecular Dynamic (MD) simulations and were further studied in PZase mutant systems of A3P, A134V, A146V, D8G, D49A, D49G, D63G, H51P, H137R, L85R, L116R, Q10P, R140S, T61P, V139M and Y103S. Generally, mutant-ligand systems displayed little deviation from the WT systems. The compound systems remained compact, with less fluctuations and more hydrogen bond interactions throughout the simulation (DB00255, DB00655, DB00672, DB00782, DB00977, DB01196, DB04573, DB06414, DB08981, DB11181, DB11760, DB13867, DB13952). From this research study, potential drugs that may be repurposed for TB therapy were identified. Majority of these drugs are currently used in the treatment of hypertension, menopause disorders and inflammation. To further understand the mutant-ligand dynamic systems, calculations such as Dynamic Residue Network (DRN) may be done. Also, the bioactivity of these drugs on Mycobacterium tuberculosis may be studied in wet laboratory, to understand their clinical impart in vivo experiments. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Authors: Gowo, Prudence
- Date: 2021-04
- Subjects: Mycobacterium tuberculosis , Pyrazinamide , Multidrug resistance , Antitubercular agents , Molecular dynamics , Hydrogen bonding , Ligand binding (Biochemistry) , Dynamic Residue Network
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/178007 , vital:42898
- Description: The World Health Organization declared Tuberculosis a global health emergency and has set a goal to eradicate it by 2035. However, effective treatment and control of the disease is being hindered by the emerging Multi-Drug Resistant and Extensively Drug Resistant strains on the most effective first line prodrug, Pyrazinamide (PZA). Studies have shown that the main cause of PZA resistance is due to mutations in the pncA gene that codes for the target protein Pyrazinamidase (PZase). Therefore, this study aimed to identify novel drug compounds that bind to the active site of wild type PZase and study the dynamics of these potential anti-TB drugs in the mutant systems of PZase. This approach will aid in identifying drugs that may be repurposed for TB therapy and/or designed to counteract PZA resistance. This was achieved by screening 2089 DrugBank compounds against the whole wild type (WT) PZase protein in molecular docking using AutoDOCK4.2. Compound screening based on docking binding energy, hydrogen bonds, molecular weight and active site proximity identified 47 compounds meeting all the set selection criteria. The stability of these compounds were analysed in Molecular Dynamic (MD) simulations and were further studied in PZase mutant systems of A3P, A134V, A146V, D8G, D49A, D49G, D63G, H51P, H137R, L85R, L116R, Q10P, R140S, T61P, V139M and Y103S. Generally, mutant-ligand systems displayed little deviation from the WT systems. The compound systems remained compact, with less fluctuations and more hydrogen bond interactions throughout the simulation (DB00255, DB00655, DB00672, DB00782, DB00977, DB01196, DB04573, DB06414, DB08981, DB11181, DB11760, DB13867, DB13952). From this research study, potential drugs that may be repurposed for TB therapy were identified. Majority of these drugs are currently used in the treatment of hypertension, menopause disorders and inflammation. To further understand the mutant-ligand dynamic systems, calculations such as Dynamic Residue Network (DRN) may be done. Also, the bioactivity of these drugs on Mycobacterium tuberculosis may be studied in wet laboratory, to understand their clinical impart in vivo experiments. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- «
- ‹
- 1
- ›
- »