Synthesis and characterization of symmetrical and unsymmetrical ferrocenyl ligands for use in the preparation of Redox Active Ruthenium Alkylidene Complexes
- Authors: Saku, Duduetsang
- Date: 2007
- Subjects: Ferrocene , Ligands , Asymmetric synthesis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10403 , http://hdl.handle.net/10948/701 , Ferrocene , Ligands , Asymmetric synthesis
- Description: Oxidation of a ferrocenyl group in conjugation to another metal centre can alter the electron density at that metal centre and lead to a change in overall reactivity of a complex. Herein, the synthesis and characterization of redox active symmetrical and unsymmetrical ferrocenylalkene derivatives is described. A change in the standard redox potential of ferrocene (465 mV), to more positive potentials in vinylferrocene 1 (478 mV) and 4-phenylvinylferrocene 3 (499 mV), showed how manipulation of a redox potential can be effected on the ferrocenyl moiety by just using conjugation effects. A shift by +13 mV is observed in 1 and this potential more than doubled in 3 (+34 mV). Ferrocenylderived ruthenium alkylidene complexes were also prepared in a cross metathesis of 1 and 3 with Grubbs’ 1 (676.5 mV) to give complexes Ferrocenylidenebis( tricyclohexylphosphine)dichlororuthenium 14, 4-ferrocenylphenylidene-bis (tricyclohexylphosphine)dichlororuthenium 15 respectively. The extent of the electronic communication between the ferrocenyl group and the ruthenium centre was then estimated by looking at the positive or negative redox potential shifts of 14 and 15 as a result of 1 and 3. A large positive potential shift by 180 mV in 14 indicated that there was a strong electronic communication between the two metal centres, while the smaller, yet significant positive potential shift by 89.5 mV in 15 showed 3 to have a lesser effect on the ruthenium centre. Compounds 14 and 15 were tested in a Ring Closing Metathesis (RCM) of diethyldiallylmalonate showed enhanced reactivity.
- Full Text:
- Date Issued: 2007
Cytokine signalling functions of human soluble IgE receptors in peripheral blood mononuclear cells from normal and hyper-allergic individuals and in B-lymphoblastoid and monocytic cell lines
- Authors: Askew, Sandra Lyn
- Date: 2006
- Subjects: Ligands , Cell receptors , Cellular signal transduction
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10305 , http://hdl.handle.net/10948/455 , Ligands , Cell receptors , Cellular signal transduction
- Description: CD23 is a multifunctional receptor/ligand, found in a variety of cell types, such as human peripheral blood mononuclear cells (PBMCs), B-lymphoblastoid cell lines, mast cells and basophils. It is also found on a variety of haematopoietic cell lines. As the low-affinity receptor for immunoglobulin E (IgE), CD23 plays a role in antigen-presentation and macrophage activation. As a surface molecule cleaved from the cell membrane, soluble CD23 (sCD23) can act as an adhesion molecule and a cytokine. Perturbances of such molecular interactions may lead to various diseases such as allergies and other inflammatory diseases. It has been speculated that elevated levels of sCD23 may be used to bind secreted IgE, thus preventing it from binding to membrane CD23 on haematopoietic cells, preventing B cells from being activated into IgE producing cells. Signal transduction by sCD23 is dependent on cell subsets, ligands and co-factors required for its function. sCD23 plays a direct role in inducing tumour necrosis factor alpha (TNFα), interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) and soluble IL-1 receptor from activated human monocytes and PBMCs in vitro. Recombinant forms of 25 and 37 kDa human sCD23 were produced by polymerase chain reaction (PCR)-cloning into pET23a, a bacterial expression vector. The proteins were expressed and refolded, followed by purification by gel filtration chromatography. The purified proteins were biochemically characterized to ensure purity and biological activity, by observing the binding to human IgE both in enzyme-linked immunosorbant assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. ELISA showed KD values of 7.23 x 10-9M and 8.12 x 10-9M for the 25 and 37 kDa proteins, respectively. These values were significantly lower than that of Hibbert et al., (2005). SPR data obtained for the 25 kDa CD23 was not of reliable quality but SPR for the 33kDa sCD23 showed a KD of 1.18 x 10-7M, close to that of Hibbert et al., (2005), J. Exp. Med, 202: 751-760. To test the therapeutic potential of the recombinant molecule, a B-lymphoblastoid cell line (Raji), a pre-monocytic cell line (U937), and PBMCs from normal and hyper-allergic individuals were used. All cells showed no change in production of cytokines. It is essential to investigate further cytokine functions and production implicated by recombinant forms of sCD23, as well as binding of sCD23 to CD21 and CD11b/c, and in vivo IgE regulation before a conclusion can be drawn as to whether recombinant sCD23 is a potential therapeutic target against allergic disease.
- Full Text:
- Date Issued: 2006
Effects of Axial Ligands on the Photosensitising Properties of Silicon Octaphenoxyphthalocyanines
- Authors: Maree, Machiel David
- Date: 2002
- Subjects: Ligands , Photochemotherapy , Phthalocyanines
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4553 , http://hdl.handle.net/10962/d1018246
- Description: Various axially substituted Silicon octaphenoxyphthalocyanines were synthesised as potential photosensitisers in the photodynamic therapy of cancer. Conventional reflux reactions were used for synthesis as well as new microwave irradiation reactions, wherein the reaction times were decreased tenfold with a marginal increase in reaction yield and product purity. An interesting series of oligomeric (dimer to a nonamer) silicon octaphenoxyphthalocyanines were also successfully synthesised in a reaction similar to polymerisation reactions. These compounds were found to undergo an axial ligand transformation upon irradiation with red light (> 600 nm) in dimethylsulphoxide solution. All the ligands were transformed into the dihydroxy silicon octaphenoxyphthalocyanine with varying degrees of phototransformation quantum yields ranging in order from 10⁻³ to 10⁻⁵ depending on the axial ligand involved. During and after axial ligand transformations a photodegredation of the dihydroxy silicon octaphenoxy phthalocyanine was observed upon continued irradiation. The oligomers were found to undergo the same axial ligand transformation process with a phototransformation quantum yield of 10⁻⁵ The singlet oxygen quantum yields of the unaggregated monomeric silicon octaphenoxy phthalocyanines were all found to be approximately 0.2 with the exception of a compound with two (trihexyl)siloxy axial substituents that had a singlet oxygen quantum yield of approximately 0.4 in dimethylsulphoxide solutions. The oligomers showed a surprising trend of an increase in singlet oxygen quantum yield with an increase in phthalocyanine ring number up to the pentamer and then a dramatic decrease to the nonamer. The triplet quantum yield and triplet lifetime were determined by laser flash photolysis for selected compounds and no correlation was observed with any of these properties and the singlet oxygen quantum yields. These selected compounds all fluoresce and a very good correlation was found between the fluorescence lifetimes determined experimentally by laser photolysis and the Strickler-Berg equation for the non-aggregated compounds. Electrochemical measurements also indicate the importance of the axial ligands upon the behaviour of the phthalocyanines as cyclic voltammetric behaviour was determined by the nature of the axial ligand.
- Full Text:
- Date Issued: 2002
Exploratory studies of novel ligand systems
- Authors: Taylor, Steven John
- Date: 1992
- Subjects: Ligands , Coordination compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4315 , http://hdl.handle.net/10962/d1004973 , Ligands , Coordination compounds
- Description: A range of novel ligand systems have been developed in three distinct phases and preliminary studies have been initiated to evaluate their complexation potential. Phase I incorporated the synthesis of single strand ligand systems, which were mainly based on amino acid residues. Techniques have been developed for the attachment of these ligand systems onto, firstly, a styrene monomer, and then later onto a pseudo-styrene linking group, viz. the p-toluoyl group. The linking reactions were based on the formation of amides or esters by the reaction of an acid chloride system with an amine or alcohol. Phase II involved the synthesis of bis-chain ligand systems and their attachment onto the p-toluoyl linking group. A further linking group was also developed at this stage, viz. the xylyl group. In the preparation of phase II ligand systems, use was made of malonic ester and iminodiacetic acid derivatives. Phase III has involved the synthesis of cyclic ligand systems, with skeletons based upon the structures used in phase I and phase II and two crown ether type systems have been prepared.
- Full Text:
- Date Issued: 1992