Post release evaluation of the distribution and efficacy of Eccritotarsus catarinensis and Eccritotarsus eichhorniae on Pontederia crassipes in South Africa
- Authors: Maseko, Zolile
- Date: 2020
- Subjects: Water hyacinth -- Biological control -- South Africa , Weeds -- Biological control -- South Africa , Miridae -- South Africa , Insects as biological pest control agents -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/143046 , vital:38196
- Description: Biological control involves the release of new species into the environment and therefore, needs to be carefully monitored through post-release assessments which have been largely neglected in the science. Post-release evaluations of biological control programmes reveal whether the control agent has established and if it impacts weed demography, while cost-benefit analyses require a different set of data that show the magnitude on return on investment. The biological control effort on Pontederia crassipes in South Africa uses, amongst others, two species of mirid, Eccritotarsus catarinensis and E. eichhorniae. Initially, they were released as a single species, but were recently divided using molecular techniques. Eccritotarsus catarinensis was released in 1999, and E. eichhorniae in 2007. After many releases over two decades, there was need to assess where each species was established in the country. Molecular techniques proved to be valuable in identifying the two species as they are morphologically indistinguishable in the field. Therefore, molecular techniques should be routinely used for screening biocontrol agents, whether new or as re-introductions. Annual surveys of the mirid release sites around South Africa were undertaken between 2016 and 2019. At each site both insect and plant parameters were measured. Only E. catarinensis is established in the field in South Africa despite the multiple releases of E. eichhorniae at over 70 sites across the country, and E. catarinensis has established at only 22 of the 45 release sites accessed during this study. This thesis tested climate, interaction with other agents already on P. crassipes, and direct competition between the two mirid species as reasons for the lack of establishment of E. eichhorniae. The results of the country-wide surveys showed that climate and water trophic status were the major determinants in the establishment of E. catarinensis. Most of the establishment was recorded in the warmer regions of the country, however, a few populations of the mirid also established in cooler areas, thus demonstrating a degree of thermal plasticity, and possible microclimates as the mirids persisted at sites shaded by riparian vegetation. Stochastic events such as active herbicide campaigns, winter frosts, droughts and floods were responsible for the absence of the mirid at some sites. At some of the eutrophic sites, despite the abundance of E. catarinensis, plants still proliferated as the water trophic status facilitated plant growth, thus, plants were able to compensate for the damage inflicted by the mirid. A more intensive, monthly, post-release evaluation was conducted on the Kubusi River, Eastern Cape Province between 2016 and 2019. This is regarded as one of the cooler water hyacinth sites. Populations of biological control agents at this site fluctuated seasonally. At this site, cold winters caused frosting of the leaves of P. crassipes with the exception of plants growing under overhanging vegetation that provided a refuge for the mirid. But, cool temperatures in the winter months (May to August) severely reduced the populations of E. catarinensis that required a long recovery phase in spring. The consequence of this was that the plants grew unchecked from the onset of the growing season forming dense mats. Of the four agents at the Kubusi River site, Eccritotarsus catarinensis recovered slowest after winter, with lag phases ranging from two months to several months of the three-year period. The release of a suite of agents has implications on the agents themselves, where interactions between the agents can be important. Interactions between pairs and even multiple agents can have implications for biocontrol, where agents are either complimentary or interfere with each other. In this case, because E. catarinensis recovered the slowest of the four agents at the site, plants were of a poor quality by mid-summer resulting in low mirid populations. Competition in weed biological control could be expected to be strongest between pairs of agents that share the same niche, and this could be the reason why E. eichhorniae failed to establish at sites where E. catarinensis had already been established for several years. When the two mirids were combined in manipulated trials in a polytunnel, populations were lower compared to when the two mirids occurred separately. Under warm conditions, it is likely that E. eichhorniae would be the superior agent compared to E. catarinensis. The evaluations discussed in this thesis highlighted gaps in agent release methodology in multispecies settings, as well as the need for strategic augmentation pre- and post-winter. It is important to release agents that will complement each other rather than compete, therefore, when releasing agents in a multispecies setting, niche differentiation needs to be considered. Here it is concluded that the best practice for dealing with the mirids is that they should be released individually, and at sites that have no other biological control agents in order to ultimately assess their efficacy. Landscape level, long-term monitoring of biological control programmes shows the impact of the control programme at a broader scale and, are far more informative than short-term studies and at fewer sites. Long-term post-release evaluations should be mandatory in biological control programmes. Furthermore, these assessments will help develop new strategies or improve on existing ones, thus achieve greater success in control.
- Full Text:
- Date Issued: 2020
Effects of ant predation on the efficacy of biological control agents Hypena Laceratalis Walker (Lepidoptera : noctuirdae) ; Falconia intermedia Distant (Hemiptera : Miridae and Teleonemia scrupulosa Stål (Hemiptera: Tingidae) on Lantana Camara (Verbenaceae) in South Africa
- Authors: Tourle, Robyn
- Date: 2010
- Subjects: Lantana camara -- Biological control -- South Africa , Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Hemiptera -- South Africa , Miridae -- South Africa , Insect pests -- Biological control -- South Africa , Ants -- Behavior , Lepidoptera , Lace bugs , Noctuidae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5677 , http://hdl.handle.net/10962/d1005362 , Lantana camara -- Biological control -- South Africa , Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Hemiptera -- South Africa , Miridae -- South Africa , Insect pests -- Biological control -- South Africa , Ants -- Behavior , Lepidoptera , Lace bugs , Noctuidae
- Description: Lantana camara L. (Verbenaceae) remains a highly invasive and ecologically damaging weed in South Africa, despite some 50 years of biological control efforts. Lack of success has been ascribed to varietal differences, climate and predation of agents but these have not been tested. In this study, the effects of ant predation were tested on populations of three biological control agents for L. camara. Colonies of two species, Crematogaster sp. 1 and 2 were investigated. Crematogaster sp. 1 colonies were offered no choice between immature stages of the agents Hypena laceratalis Walker (Lepidoptera: Noctuidae), Falconia intermedia Distant (Hemiptera: Miridae) or Teleonemia scrupulosa Stål (Hemiptera: Tingidae) on lantana shoots. Density-dependent predation on F. intermedia and T. scrupulosa nymphs on lantana shoots was tested using Crematogaster sp. 2 colonies. In choice experiments Crematogaster sp. 2 colonies were offered F. intermedia or T. scrupulosa nymphs on potted lantana plants. Preliminary food trials confirmed that colonies foraged for protein, thereby validating results of no-choice experiments. Crematogaster sp.1 foragers removed 50% of F. intermedia nymphs, followed by 45% of H. laceratalis larvae and only 9% of T. scrupulosa nymphs. Foragers recruited most actively to H. laceratalis larvae and significantly more H. laceratalis biomass was removed than either F. intermedia or T. scrupulosa. A trade-off existed in prey size selection because larger larvae provided considerably more biomass but required forager cooperation and a longer time to subdue than did smaller prey. This increases both forager energy expense and mortality risk by other predators. This study showed that all Crematogaster sp. 1 colonies removed small (≤10mm) H. laceratalis larvae more frequently than larvae larger than 10mm. Thus, of these biological control agents, predators probably prefer small H. laceratalis larvae. Significantly more F. intermedia than T. scrupulosa nymphs were removed by Crematogaster sp. 1, while Crematogaster sp. 2 colonies removed comparable numbers of both agent species. Falconia intermedia nymphs' fast movement triggered a predatory response by these ant species. In contrast, the relatively immobile behaviour of T. scrupulosa nymphs was identified as a highly effective predator avoidance strategy. Since T. scrupulosa nymphs are unable to escape predators by moving, they appear to depend on the presence of alternative prey attracting predator attention. At high agent and/or forager density, T. scrupulosa nymphs attempted escape, but foragers identified them as prey once they moved and caught them. Predation on F. intermedia was also density dependent in that at high nymph and/or forager densities, escape routes were congested and nymphs were more easily caught. Survival of F. intermedia and T. scrupulosa nymphs in particular was low on ant-accessed shrubs in choice experiments and high on ant-excluded shrubs. It is likely that ants significantly depress F. intermedia populations in the field since besides predation, ant foragers probably interrupt F. intermedia feeding and ovipositioning. The combination of parasitism and predation on early instar larvae may explain why H. laceratalis occurs across lantana's range in South Africa but populations remain low. It is unlikely that T. scrupulosa nymphs are habitually preyed on by ant species unless they attract attention by being mobile. Although biological control of L. camara is influenced by climate and physiological defence mechanisms, this study has shown that predation by two ant species severely impacts leaf-feeding agents for L. camara. Thus, it is recommended that future selection of additional agents to control lantana should exclude leaf-feeding .
- Full Text:
- Date Issued: 2010