Application of machine learning, molecular modelling and structural data mining against antiretroviral drug resistance in HIV-1
- Sheik Amamuddy, Olivier Serge André
- Authors: Sheik Amamuddy, Olivier Serge André
- Date: 2020
- Subjects: Machine learning , Molecules -- Models , Data mining , Neural networks (Computer science) , Antiretroviral agents , Protease inhibitors , Drug resistance , Multidrug resistance , Molecular dynamics , Renin-angiotensin system , HIV (Viruses) -- South Africa , HIV (Viruses) -- Social aspects -- South Africa , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115964 , vital:34282
- Description: Millions are affected with the Human Immunodeficiency Virus (HIV) world wide, even though the death toll is on the decline. Antiretrovirals (ARVs), more specifically protease inhibitors have shown tremendous success since their introduction into therapy since the mid 1990’s by slowing down progression to the Acquired Immune Deficiency Syndrome (AIDS). However, Drug Resistance Mutations (DRMs) are constantly selected for due to viral adaptation, making drugs less effective over time. The current challenge is to manage the infection optimally with a limited set of drugs, with differing associated levels of toxicities in the face of a virus that (1) exists as a quasispecies, (2) may transmit acquired DRMs to drug-naive individuals and (3) that can manifest class-wide resistance due to similarities in design. The presence of latent reservoirs, unawareness of infection status, education and various socio-economic factors make the problem even more complex. Adequate timing and choice of drug prescription together with treatment adherence are very important as drug toxicities, drug failure and sub-optimal treatment regimens leave room for further development of drug resistance. While CD4 cell count and the determination of viral load from patients in resource-limited settings are very helpful to track how well a patient’s immune system is able to keep the virus in check, they can be lengthy in determining whether an ARV is effective. Phenosense assay kits answer this problem using viruses engineered to contain the patient sequences and evaluating their growth in the presence of different ARVs, but this can be expensive and too involved for routine checks. As a cheaper and faster alternative, genotypic assays provide similar information from HIV pol sequences obtained from blood samples, inferring ARV efficacy on the basis of drug resistance mutation patterns. However, these are inherently complex and the various methods of in silico prediction, such as Geno2pheno, REGA and Stanford HIVdb do not always agree in every case, even though this gap decreases as the list of resistance mutations is updated. A major gap in HIV treatment is that the information used for predicting drug resistance is mainly computed from data containing an overwhelming majority of B subtype HIV, when these only comprise about 12% of the worldwide HIV infections. In addition to growing evidence that drug resistance is subtype-related, it is intuitive to hypothesize that as subtyping is a phylogenetic classification, the more divergent a subtype is from the strains used in training prediction models, the less their resistance profiles would correlate. For the aforementioned reasons, we used a multi-faceted approach to attack the virus in multiple ways. This research aimed to (1) improve resistance prediction methods by focusing solely on the available subtype, (2) mine structural information pertaining to resistance in order to find any exploitable weak points and increase knowledge of the mechanistic processes of drug resistance in HIV protease. Finally, (3) we screen for protease inhibitors amongst a database of natural compounds [the South African natural compound database (SANCDB)] to find molecules or molecular properties usable to come up with improved inhibition against the drug target. In this work, structural information was mined using the Anisotropic Network Model, Dynamics Cross-Correlation, Perturbation Response Scanning, residue contact network analysis and the radius of gyration. These methods failed to give any resistance-associated patterns in terms of natural movement, internal correlated motions, residue perturbation response, relational behaviour and global compaction respectively. Applications of drug docking, homology-modelling and energy minimization for generating features suitable for machine-learning were not very promising, and rather suggest that the value of binding energies by themselves from Vina may not be very reliable quantitatively. All these failures lead to a refinement that resulted in a highly sensitive statistically-guided network construction and analysis, which leads to key findings in the early dynamics associated with resistance across all PI drugs. The latter experiment unravelled a conserved lateral expansion motion occurring at the flap elbows, and an associated contraction that drives the base of the dimerization domain towards the catalytic site’s floor in the case of drug resistance. Interestingly, we found that despite the conserved movement, bond angles were degenerate. Alongside, 16 Artificial Neural Network models were optimised for HIV proteases and reverse transcriptase inhibitors, with performances on par with Stanford HIVdb. Finally, we prioritised 9 compounds with potential protease inhibitory activity using virtual screening and molecular dynamics (MD) to additionally suggest a promising modification to one of the compounds. This yielded another molecule inhibiting equally well both opened and closed receptor target conformations, whereby each of the compounds had been selected against an array of multi-drug-resistant receptor variants. While a main hurdle was a lack of non-B subtype data, our findings, especially from the statistically-guided network analysis, may extrapolate to a certain extent to them as the level of conservation was very high within subtype B, despite all the present variations. This network construction method lays down a sensitive approach for analysing a pair of alternate phenotypes for which complex patterns prevail, given a sufficient number of experimental units. During the course of research a weighted contact mapping tool was developed to compare renin-angiotensinogen variants and packaged as part of the MD-TASK tool suite. Finally the functionality, compatibility and performance of the MODE-TASK tool were evaluated and confirmed for both Python2.7.x and Python3.x, for the analysis of normals modes from single protein structures and essential modes from MD trajectories. These techniques and tools collectively add onto the conventional means of MD analysis.
- Full Text:
- Authors: Sheik Amamuddy, Olivier Serge André
- Date: 2020
- Subjects: Machine learning , Molecules -- Models , Data mining , Neural networks (Computer science) , Antiretroviral agents , Protease inhibitors , Drug resistance , Multidrug resistance , Molecular dynamics , Renin-angiotensin system , HIV (Viruses) -- South Africa , HIV (Viruses) -- Social aspects -- South Africa , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115964 , vital:34282
- Description: Millions are affected with the Human Immunodeficiency Virus (HIV) world wide, even though the death toll is on the decline. Antiretrovirals (ARVs), more specifically protease inhibitors have shown tremendous success since their introduction into therapy since the mid 1990’s by slowing down progression to the Acquired Immune Deficiency Syndrome (AIDS). However, Drug Resistance Mutations (DRMs) are constantly selected for due to viral adaptation, making drugs less effective over time. The current challenge is to manage the infection optimally with a limited set of drugs, with differing associated levels of toxicities in the face of a virus that (1) exists as a quasispecies, (2) may transmit acquired DRMs to drug-naive individuals and (3) that can manifest class-wide resistance due to similarities in design. The presence of latent reservoirs, unawareness of infection status, education and various socio-economic factors make the problem even more complex. Adequate timing and choice of drug prescription together with treatment adherence are very important as drug toxicities, drug failure and sub-optimal treatment regimens leave room for further development of drug resistance. While CD4 cell count and the determination of viral load from patients in resource-limited settings are very helpful to track how well a patient’s immune system is able to keep the virus in check, they can be lengthy in determining whether an ARV is effective. Phenosense assay kits answer this problem using viruses engineered to contain the patient sequences and evaluating their growth in the presence of different ARVs, but this can be expensive and too involved for routine checks. As a cheaper and faster alternative, genotypic assays provide similar information from HIV pol sequences obtained from blood samples, inferring ARV efficacy on the basis of drug resistance mutation patterns. However, these are inherently complex and the various methods of in silico prediction, such as Geno2pheno, REGA and Stanford HIVdb do not always agree in every case, even though this gap decreases as the list of resistance mutations is updated. A major gap in HIV treatment is that the information used for predicting drug resistance is mainly computed from data containing an overwhelming majority of B subtype HIV, when these only comprise about 12% of the worldwide HIV infections. In addition to growing evidence that drug resistance is subtype-related, it is intuitive to hypothesize that as subtyping is a phylogenetic classification, the more divergent a subtype is from the strains used in training prediction models, the less their resistance profiles would correlate. For the aforementioned reasons, we used a multi-faceted approach to attack the virus in multiple ways. This research aimed to (1) improve resistance prediction methods by focusing solely on the available subtype, (2) mine structural information pertaining to resistance in order to find any exploitable weak points and increase knowledge of the mechanistic processes of drug resistance in HIV protease. Finally, (3) we screen for protease inhibitors amongst a database of natural compounds [the South African natural compound database (SANCDB)] to find molecules or molecular properties usable to come up with improved inhibition against the drug target. In this work, structural information was mined using the Anisotropic Network Model, Dynamics Cross-Correlation, Perturbation Response Scanning, residue contact network analysis and the radius of gyration. These methods failed to give any resistance-associated patterns in terms of natural movement, internal correlated motions, residue perturbation response, relational behaviour and global compaction respectively. Applications of drug docking, homology-modelling and energy minimization for generating features suitable for machine-learning were not very promising, and rather suggest that the value of binding energies by themselves from Vina may not be very reliable quantitatively. All these failures lead to a refinement that resulted in a highly sensitive statistically-guided network construction and analysis, which leads to key findings in the early dynamics associated with resistance across all PI drugs. The latter experiment unravelled a conserved lateral expansion motion occurring at the flap elbows, and an associated contraction that drives the base of the dimerization domain towards the catalytic site’s floor in the case of drug resistance. Interestingly, we found that despite the conserved movement, bond angles were degenerate. Alongside, 16 Artificial Neural Network models were optimised for HIV proteases and reverse transcriptase inhibitors, with performances on par with Stanford HIVdb. Finally, we prioritised 9 compounds with potential protease inhibitory activity using virtual screening and molecular dynamics (MD) to additionally suggest a promising modification to one of the compounds. This yielded another molecule inhibiting equally well both opened and closed receptor target conformations, whereby each of the compounds had been selected against an array of multi-drug-resistant receptor variants. While a main hurdle was a lack of non-B subtype data, our findings, especially from the statistically-guided network analysis, may extrapolate to a certain extent to them as the level of conservation was very high within subtype B, despite all the present variations. This network construction method lays down a sensitive approach for analysing a pair of alternate phenotypes for which complex patterns prevail, given a sufficient number of experimental units. During the course of research a weighted contact mapping tool was developed to compare renin-angiotensinogen variants and packaged as part of the MD-TASK tool suite. Finally the functionality, compatibility and performance of the MODE-TASK tool were evaluated and confirmed for both Python2.7.x and Python3.x, for the analysis of normals modes from single protein structures and essential modes from MD trajectories. These techniques and tools collectively add onto the conventional means of MD analysis.
- Full Text:
Computer aided approaches against Human African Trypanosomiasis
- Authors: Kimuda, Magambo Phillip
- Date: 2020
- Subjects: African trypanosomiasis , African trypanosomiasis -- Chemotherapy , Genomics , Macrophage migration inhibitory factor , Trypanosoma brucei , Pteridines , Tetrahydrofolate dehydrogenase , Adenylic acid , Molecular dynamics , Principal components analysis , Bioinformatics , Single nucleotide polymorphisms , Single Nucleotide Variants , Candidate Gene Association Study (CGAS)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/142542 , vital:38089
- Description: The thesis presented here is divided into two parts under a common theme that is the use of computer based tools, genomics, and in vitro experiments to develop innovative ways of tackling Human African Trypanosomiasis (HAT). Part I of this thesis focused on the human host genetic determinants while Part II focused on the discovery of novel chemotherapeutics against the parasite. Part I is further sub-divided into two parts: The first involves a Candidate Gene Association Study (CGAS) on an African population to identify genetic determinants associated with disease and/or susceptibility to HAT. The second involves studying the effects of missense Single Nucleotide Variants (SNVs) on protein structure, dynamics, and function using Macrophage Migration Inhibitory Factor (MIF) as a case study. Part II is also sub-divided into two parts: The first involves a computer based rational drug discovery of potential inhibitors against the Trypanosoma the folate pathway; particularly by targeting Trypanosoma brucei Pteridine Reductase (TbPTR1) which is an enzyme used by trypanosomes to overcome T. brucei Dihydrofolate Reductase (TbDHFR) inhibition. Lastly the derivation of CHARMM force-field parameters that can be used to accurately model the geometry and dynamics of the T. brucei Phosphodiesterase B1 enzyme (TbrPDEB1) bimetallic active site center. The derived parameters were then used in MD simulations to characterise protein-ligand residue interactions that are important in TbrPDEB1 inhibition with the goal of targeting the cyclic Adenosine Monophosphate (cAMP) signalling pathway. In the CGAS we were unable to detect any genetic associations in the Ugandan cohort analysed that passed correction for multiple testing in spite of the study being sufficiently powered. Additionally, our study found no association of the Apo lipoprotein 1 (APOL1) G2 allele association with protection against acute HAT that has been previously reported. Future investigations for example, Genome Wide Association Studies using larger samples sizes (>3000 cases and controls) are required. Macrophage migration inhibitory factor (MIF) is a cytokine that is important in both innate and adaptive immunity that has been shown to play a role in T. brucei pathogenicity using murine models. A total of 27 missense SNVs were modelled using homology modelling to create MIF protein mutants that were investigated using in silico effect prediction tools, molecular dynamics (MD), Principal Component Analysis (PCA), and Dynamic Residue Network (DRN) analysis. Our results demonstrate that mutations P2Q, I5M, P16Q, L23F, T24S, T31I, Y37H, H41P, M48V, P44L, G52C, S54R, I65M, I68T, S75F, N106S, and T113S caused significant conformational changes. Further, DRN analysis showed that residues P2, T31, Y37, G52, I65, I68, S75, N106, and T113S are part of a similar local residue interaction network with functional significance. These results show how polymorphisms such as missense SNVs can affect protein conformation, dynamics, and function. Trypanosomes are auxotrophic for folates and pterins but require them for survival. They scavenge them from their hosts. PTR1 is a multifunctional enzyme that is unique to trypanosomatids that reduces both pterins and folates. In the presence of DHFR inhibitors, PTR1 is over-expressed thus providing an escape from the effects of DHFR inhibition. Both TbPTR1 and TbDHFR are pharmacologically and genetically validated drug targets. In this study 5742 compounds were screened using molecular docking, and 13 promising binding modes were further analysed using MD simulations. The trajectories were analysed using RMSD, Rg, RMSF, PCA, Essential Dynamics Analysis (EDA), Molecular Mechanics Poisson–Boltzmann surface area (MM-PBSA) binding free energy calculations, and DRN analysis. The computational screening approach allowed us to identify five of the compounds, named RUBi004, RUBi007, RUBi014, RUBi016 and RUBi018 that exhibited antitrypanosomal growth activities against trypanosomes in culture with IC50 values of 12.5 ± 4.8 μM, 32.4 ± 4.2 μM, 5.9 ± 1.4 μM, 28.2 ± 3.3 μM, and 9.7 ± 2.1 μM, respectively. Further when used in combination with WR99210 a known TbDHFR inhibitor RUBi004, RUBi007, RUBi014 and RUBi018 showed antagonism while RUBi016 showed an additive effect. These results indicate that the four compounds might be competing with TbDHFR while RUBi016 might be more specific for TbPTR1. These compounds provide scaffolds that can be further optimised to improve their potency and specificity. Lastly, using a systematic approach we derived CHARMM force-field parameters to accurately describe the TbrPDEB1 bi-metal catalytic center. For dynamics, we employed mixed bonded and non-bonded approach. We optimised the structure using a two-layer QM/MM ONIOM (B3LYP/6-31(g): UFF). The TbrPDEB1 bi-metallic center bonds, angles, and dihedrals were parameterized by fitting the energy profiles from Potential Energy Surface (PES) scans to the CHARMM potential energy function. The parameters were validated by means of MD simulations and analysed using RMSD, Rg, RMSF, hydrogen bonding, bond/angle/dihedral evaluations, EDA, PCA, and DRN analysis. The force-field parameters were able to accurately reproduce the geometry and dynamics of the TbrPDEB1 bi-metal catalytic center during MD simulations. Molecular docking was used to identify 6 potential hits, that inhibited trypanosome growth in vitro. The derived force-field parameters were used to simulate the 6 protein-ligand complexes with the aim of elucidating crucial protein-ligand residue interactions. Using the most potent ligand RUBi022 that had an IC50 of 14.96 μM we were able to identify key residue interactions that can be of use in in silico prediction of potential TbrPDEB1 inhibitors. Overall we demonstrate how bioinformatics tools can complement current disease eradication strategies. Future work will focus on identifying variants identified in Genome Wide Association Studies and partnering with wet labs to carry out further enzyme-ligand activity relationship studies, structure determination or characterisation of appropriate protein-ligand complexes by crystallography, and site specific mutation studies
- Full Text:
- Authors: Kimuda, Magambo Phillip
- Date: 2020
- Subjects: African trypanosomiasis , African trypanosomiasis -- Chemotherapy , Genomics , Macrophage migration inhibitory factor , Trypanosoma brucei , Pteridines , Tetrahydrofolate dehydrogenase , Adenylic acid , Molecular dynamics , Principal components analysis , Bioinformatics , Single nucleotide polymorphisms , Single Nucleotide Variants , Candidate Gene Association Study (CGAS)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/142542 , vital:38089
- Description: The thesis presented here is divided into two parts under a common theme that is the use of computer based tools, genomics, and in vitro experiments to develop innovative ways of tackling Human African Trypanosomiasis (HAT). Part I of this thesis focused on the human host genetic determinants while Part II focused on the discovery of novel chemotherapeutics against the parasite. Part I is further sub-divided into two parts: The first involves a Candidate Gene Association Study (CGAS) on an African population to identify genetic determinants associated with disease and/or susceptibility to HAT. The second involves studying the effects of missense Single Nucleotide Variants (SNVs) on protein structure, dynamics, and function using Macrophage Migration Inhibitory Factor (MIF) as a case study. Part II is also sub-divided into two parts: The first involves a computer based rational drug discovery of potential inhibitors against the Trypanosoma the folate pathway; particularly by targeting Trypanosoma brucei Pteridine Reductase (TbPTR1) which is an enzyme used by trypanosomes to overcome T. brucei Dihydrofolate Reductase (TbDHFR) inhibition. Lastly the derivation of CHARMM force-field parameters that can be used to accurately model the geometry and dynamics of the T. brucei Phosphodiesterase B1 enzyme (TbrPDEB1) bimetallic active site center. The derived parameters were then used in MD simulations to characterise protein-ligand residue interactions that are important in TbrPDEB1 inhibition with the goal of targeting the cyclic Adenosine Monophosphate (cAMP) signalling pathway. In the CGAS we were unable to detect any genetic associations in the Ugandan cohort analysed that passed correction for multiple testing in spite of the study being sufficiently powered. Additionally, our study found no association of the Apo lipoprotein 1 (APOL1) G2 allele association with protection against acute HAT that has been previously reported. Future investigations for example, Genome Wide Association Studies using larger samples sizes (>3000 cases and controls) are required. Macrophage migration inhibitory factor (MIF) is a cytokine that is important in both innate and adaptive immunity that has been shown to play a role in T. brucei pathogenicity using murine models. A total of 27 missense SNVs were modelled using homology modelling to create MIF protein mutants that were investigated using in silico effect prediction tools, molecular dynamics (MD), Principal Component Analysis (PCA), and Dynamic Residue Network (DRN) analysis. Our results demonstrate that mutations P2Q, I5M, P16Q, L23F, T24S, T31I, Y37H, H41P, M48V, P44L, G52C, S54R, I65M, I68T, S75F, N106S, and T113S caused significant conformational changes. Further, DRN analysis showed that residues P2, T31, Y37, G52, I65, I68, S75, N106, and T113S are part of a similar local residue interaction network with functional significance. These results show how polymorphisms such as missense SNVs can affect protein conformation, dynamics, and function. Trypanosomes are auxotrophic for folates and pterins but require them for survival. They scavenge them from their hosts. PTR1 is a multifunctional enzyme that is unique to trypanosomatids that reduces both pterins and folates. In the presence of DHFR inhibitors, PTR1 is over-expressed thus providing an escape from the effects of DHFR inhibition. Both TbPTR1 and TbDHFR are pharmacologically and genetically validated drug targets. In this study 5742 compounds were screened using molecular docking, and 13 promising binding modes were further analysed using MD simulations. The trajectories were analysed using RMSD, Rg, RMSF, PCA, Essential Dynamics Analysis (EDA), Molecular Mechanics Poisson–Boltzmann surface area (MM-PBSA) binding free energy calculations, and DRN analysis. The computational screening approach allowed us to identify five of the compounds, named RUBi004, RUBi007, RUBi014, RUBi016 and RUBi018 that exhibited antitrypanosomal growth activities against trypanosomes in culture with IC50 values of 12.5 ± 4.8 μM, 32.4 ± 4.2 μM, 5.9 ± 1.4 μM, 28.2 ± 3.3 μM, and 9.7 ± 2.1 μM, respectively. Further when used in combination with WR99210 a known TbDHFR inhibitor RUBi004, RUBi007, RUBi014 and RUBi018 showed antagonism while RUBi016 showed an additive effect. These results indicate that the four compounds might be competing with TbDHFR while RUBi016 might be more specific for TbPTR1. These compounds provide scaffolds that can be further optimised to improve their potency and specificity. Lastly, using a systematic approach we derived CHARMM force-field parameters to accurately describe the TbrPDEB1 bi-metal catalytic center. For dynamics, we employed mixed bonded and non-bonded approach. We optimised the structure using a two-layer QM/MM ONIOM (B3LYP/6-31(g): UFF). The TbrPDEB1 bi-metallic center bonds, angles, and dihedrals were parameterized by fitting the energy profiles from Potential Energy Surface (PES) scans to the CHARMM potential energy function. The parameters were validated by means of MD simulations and analysed using RMSD, Rg, RMSF, hydrogen bonding, bond/angle/dihedral evaluations, EDA, PCA, and DRN analysis. The force-field parameters were able to accurately reproduce the geometry and dynamics of the TbrPDEB1 bi-metal catalytic center during MD simulations. Molecular docking was used to identify 6 potential hits, that inhibited trypanosome growth in vitro. The derived force-field parameters were used to simulate the 6 protein-ligand complexes with the aim of elucidating crucial protein-ligand residue interactions. Using the most potent ligand RUBi022 that had an IC50 of 14.96 μM we were able to identify key residue interactions that can be of use in in silico prediction of potential TbrPDEB1 inhibitors. Overall we demonstrate how bioinformatics tools can complement current disease eradication strategies. Future work will focus on identifying variants identified in Genome Wide Association Studies and partnering with wet labs to carry out further enzyme-ligand activity relationship studies, structure determination or characterisation of appropriate protein-ligand complexes by crystallography, and site specific mutation studies
- Full Text:
Cyclooxygenase-1 as an anti-stroke target: potential inhibitor identification and non-synonymous single nucleotide polymorphism analysis
- Authors: Muronzi, Tendai
- Date: 2020
- Subjects: Cerebrovascular disease , Cerebrovascular disease -- Treatment , Cerebrovascular disease -- Chemotherapy , Cyclooxygenases , High throughput screening (Drug development) , Drug development , Molecular dynamics , South African Natural Compounds Database , ZINC database
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/143404 , vital:38243
- Description: Stroke is the third leading cause of death worldwide, with 87% of cases being ischemic stroke. The two primary therapeutic strategies to reduce post-ischemic brain damage are cellular and vascular approaches. The vascular strategy aims to rapidly re-open obstructed blood vessels, while the cellular approach aims to interfere with the signalling pathways that facilitate neuron damage and death. Unfortunately, popular vascular treatments have adverse side effects, necessitating the need for alternative chemotherapeutics. In this study, cyclooxygenase-1 (COX-1), which plays a significant role in the post- ischemic neuroinflammation and neuronal death, was targeted for identification of novel drug compounds and to assess the effect of nsSNPs on its structure and function. In a drug discovery part, ligands from the South African Natural Compounds Database (SANCDB-https://sancdb.rubi.ru.ac.za/) and ZINC database (http://zinc15.docking.org/) were used for high-throughput virtual screening (HVTS) against COX-1. Additionally, five nsSNPs were being investigated to assess their impact on protein structure and function. Three of these SNPs were in the COX-1 dimer interface. Molecular docking and molecular dynamics simulations revealed asymmetric nature of the protein. Several ligands, peculiar to each monomer, exhibited favourable binding energies in the respective active sites. SNP analysis indicated effects on inter-monomer interactions and protein stability.
- Full Text:
- Authors: Muronzi, Tendai
- Date: 2020
- Subjects: Cerebrovascular disease , Cerebrovascular disease -- Treatment , Cerebrovascular disease -- Chemotherapy , Cyclooxygenases , High throughput screening (Drug development) , Drug development , Molecular dynamics , South African Natural Compounds Database , ZINC database
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/143404 , vital:38243
- Description: Stroke is the third leading cause of death worldwide, with 87% of cases being ischemic stroke. The two primary therapeutic strategies to reduce post-ischemic brain damage are cellular and vascular approaches. The vascular strategy aims to rapidly re-open obstructed blood vessels, while the cellular approach aims to interfere with the signalling pathways that facilitate neuron damage and death. Unfortunately, popular vascular treatments have adverse side effects, necessitating the need for alternative chemotherapeutics. In this study, cyclooxygenase-1 (COX-1), which plays a significant role in the post- ischemic neuroinflammation and neuronal death, was targeted for identification of novel drug compounds and to assess the effect of nsSNPs on its structure and function. In a drug discovery part, ligands from the South African Natural Compounds Database (SANCDB-https://sancdb.rubi.ru.ac.za/) and ZINC database (http://zinc15.docking.org/) were used for high-throughput virtual screening (HVTS) against COX-1. Additionally, five nsSNPs were being investigated to assess their impact on protein structure and function. Three of these SNPs were in the COX-1 dimer interface. Molecular docking and molecular dynamics simulations revealed asymmetric nature of the protein. Several ligands, peculiar to each monomer, exhibited favourable binding energies in the respective active sites. SNP analysis indicated effects on inter-monomer interactions and protein stability.
- Full Text:
Prediction of mass spectra for natural products using an ab initio approach
- Authors: Novokoza, Yolanda
- Date: 2020
- Subjects: Molecular dynamics , Molecular dynamics -- Computer simulation , Mass spectroscopy , Electron impact ionization
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167166 , vital:41443
- Description: Mass spectrometry (MS) is a technique that measures the fragmentation of molecules, dependent on the molecule’s chemical composition and structure, by first introducing a charge on the molecules. The instrument records the mass to charge ratio, but the energy from the ionization process causes the molecule to fragment. The resultant mass spectrum is highly indicative of not only the molecule analyzed, but also its chemical composition. MS is used in research and industry for both routine and research purposes. One such way to ionize molecules for MS is by bombarding the molecule with electrons which is the basis of electron impact mass spectrometry (EIMS). Although EIMS is widely used, prediction of electron impact mass spectra from first principles is a challenging problem due to a need to accurately determine the probability of different fragmentation pathways of a molecule. Ab initio molecular dynamics based methods are able to explore in an automatic fashion the energetically available fragmentation paths thus give reaction mechanisms in an unbiased way. The mass spectra of five molecules have been explored in work-flows leading to the prediction of mass spectra. These molecules include three natural products alpha-hispanolol, PFB oxime derivative and boronolide (for which experimental mass spectra were not available) and two compounds from the NIST database (for which experimental mass spectra were available). For each of these systems many random conformations were generated using the RDKit library. To all conformations random velocities were applied to each atom. Ab initio molecular dynamics was performed on each conformer, using these initial random velocities using CP2K software, at DFTB+ level at a variety of highly raised temperatures (to accelerate the formation of fragments) Fragmentation was monitored by iterating through all bonds, and identifying bond breakages during dynamics. Graph theoretical packages were used then to track distinct fragments generated. For each of these fragments, charges were determined from Mulliken analysis for all atoms on the fragment from the QM calculations and sum of atomic spin densities per fragment was also plotted. The fragment with the greatest charge (corresponding to the formation of a cation fragment) was taken for plotting on the mass spectrum. Finally, from the mass of the fragment and its elemental composition, the isotopic distribution for the fragment was determined, and this distribution was included by addition in to the mass spectrum. For all trajectories, the sum of all isotopic distributions determined the final mass spectrum.
- Full Text:
- Authors: Novokoza, Yolanda
- Date: 2020
- Subjects: Molecular dynamics , Molecular dynamics -- Computer simulation , Mass spectroscopy , Electron impact ionization
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167166 , vital:41443
- Description: Mass spectrometry (MS) is a technique that measures the fragmentation of molecules, dependent on the molecule’s chemical composition and structure, by first introducing a charge on the molecules. The instrument records the mass to charge ratio, but the energy from the ionization process causes the molecule to fragment. The resultant mass spectrum is highly indicative of not only the molecule analyzed, but also its chemical composition. MS is used in research and industry for both routine and research purposes. One such way to ionize molecules for MS is by bombarding the molecule with electrons which is the basis of electron impact mass spectrometry (EIMS). Although EIMS is widely used, prediction of electron impact mass spectra from first principles is a challenging problem due to a need to accurately determine the probability of different fragmentation pathways of a molecule. Ab initio molecular dynamics based methods are able to explore in an automatic fashion the energetically available fragmentation paths thus give reaction mechanisms in an unbiased way. The mass spectra of five molecules have been explored in work-flows leading to the prediction of mass spectra. These molecules include three natural products alpha-hispanolol, PFB oxime derivative and boronolide (for which experimental mass spectra were not available) and two compounds from the NIST database (for which experimental mass spectra were available). For each of these systems many random conformations were generated using the RDKit library. To all conformations random velocities were applied to each atom. Ab initio molecular dynamics was performed on each conformer, using these initial random velocities using CP2K software, at DFTB+ level at a variety of highly raised temperatures (to accelerate the formation of fragments) Fragmentation was monitored by iterating through all bonds, and identifying bond breakages during dynamics. Graph theoretical packages were used then to track distinct fragments generated. For each of these fragments, charges were determined from Mulliken analysis for all atoms on the fragment from the QM calculations and sum of atomic spin densities per fragment was also plotted. The fragment with the greatest charge (corresponding to the formation of a cation fragment) was taken for plotting on the mass spectrum. Finally, from the mass of the fragment and its elemental composition, the isotopic distribution for the fragment was determined, and this distribution was included by addition in to the mass spectrum. For all trajectories, the sum of all isotopic distributions determined the final mass spectrum.
- Full Text:
- «
- ‹
- 1
- ›
- »