Validation of an assessment tool for mental fatigue applied to rotational shift work
- Authors: Huysamen, Kirsten Christina
- Date: 2014
- Subjects: Mental fatigue , Shift systems , Performance , Motor ability , Memory
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5154 , http://hdl.handle.net/10962/d1013551
- Description: Mental fatigue has been proven to be highly prominent during shift work, due to long, irregular working hours and disruption of the circadian rhythm. Measuring mental fatigue has been a challenge for many years, where commonly cognitive test tasks are used to assess mental fatigue. Moreover, these test tasks do not isolate where fatigue is occurring during human information processing. The human information processing system consists of four core stages, each of which requires numerous cognitive functions in order to process information. The Human Kinetics and Ergonomics Department at Rhodes University has developed six cognitive test tasks where each isolates a cognitive function: an accommodation test task, a visual detection test task, a reading test task, a memory test task, a tapping test task and a neural control test task. The cognitive functions include: eye accommodation, visual discrimination, visual pattern recognition, memory duration, motor programming and peripheral neural control. General task-related effect can also be examined for each of these cognitive test tasks which include choice reaction time, visual detection, reading performance, short-term memory, motor control and tracking performance. Additionally, a simple reaction time test task has been developed to analyse simple reaction time. This test task does not isolate a cognitive function. One or more parameters can be examined for each cognitive function and task-related effect. The first aim of this study was to validate numerous cognitive test tasks for mental fatigue in a simulated shift work laboratory setting. The second aim was to assess the validated cognitive test tasks in Phase 1 in a field-based rotational shift work setting. Parameters revealing sensitivity to mental fatigue would be validated for mental fatigue applied to rotational shift work and would be inserted into an assessment tool. In the laboratory setting, the seven cognitive test tasks were examined on four different types of shift work regimes. The first regime was a standard eight-hour shift work system, and the other three were non-conventional shift work regimes. Participants (n = 12 per regime) were required to complete one day shift followed by four night shifts, where testing occurred before and after each shift and four times within each shift. The cognitive test tasks revealing sensitivity to fatigue included: visual detection test task, reading test task, memory test task, tapping test task, neural control test task and simple reaction time test task. The testing of Phase 2 was conducted in three different companies, where each performed a different type of rotational shift work. The six cognitive test tasks validated for mental fatigue in Phase 1 were tested before and after work for each shift type within the rotational shift work system adopted by each company. Company A (n = 18) and Company B (n = 24) performed two-shift rotational shift work systems, where the shift length of Company A was 12-hours and the shift length of Company B was irregular hours. Company C (n = 21) performed an eight-hour three-shift rotational shift work system. Nine parameters revealed fatiguing effects and were inserted into the assessment tool, five of which provided information on a specific cognitive function: error rate for visual discrimination, processing time for visual pattern recognition, error rate for visual pattern recognition, impact of rehearsal time on memory recall rate for memory duration and the high-precision condition for motor programming time. The remaining four parameters provided information on general task-related effects: reading speed for reading performance, recall rate for short-term memory, reaction time for motor control and simple reaction time. Therefore, an assessment tool comprising nine parameters was validated for mental fatigue applied to rotational shift work, where five of the parameters were able to isolate exactly where fatigue was occurring during human information processing and the other four parameters were able to assess fatigue occurring throughout the human information processing chain.
- Full Text:
- Authors: Huysamen, Kirsten Christina
- Date: 2014
- Subjects: Mental fatigue , Shift systems , Performance , Motor ability , Memory
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5154 , http://hdl.handle.net/10962/d1013551
- Description: Mental fatigue has been proven to be highly prominent during shift work, due to long, irregular working hours and disruption of the circadian rhythm. Measuring mental fatigue has been a challenge for many years, where commonly cognitive test tasks are used to assess mental fatigue. Moreover, these test tasks do not isolate where fatigue is occurring during human information processing. The human information processing system consists of four core stages, each of which requires numerous cognitive functions in order to process information. The Human Kinetics and Ergonomics Department at Rhodes University has developed six cognitive test tasks where each isolates a cognitive function: an accommodation test task, a visual detection test task, a reading test task, a memory test task, a tapping test task and a neural control test task. The cognitive functions include: eye accommodation, visual discrimination, visual pattern recognition, memory duration, motor programming and peripheral neural control. General task-related effect can also be examined for each of these cognitive test tasks which include choice reaction time, visual detection, reading performance, short-term memory, motor control and tracking performance. Additionally, a simple reaction time test task has been developed to analyse simple reaction time. This test task does not isolate a cognitive function. One or more parameters can be examined for each cognitive function and task-related effect. The first aim of this study was to validate numerous cognitive test tasks for mental fatigue in a simulated shift work laboratory setting. The second aim was to assess the validated cognitive test tasks in Phase 1 in a field-based rotational shift work setting. Parameters revealing sensitivity to mental fatigue would be validated for mental fatigue applied to rotational shift work and would be inserted into an assessment tool. In the laboratory setting, the seven cognitive test tasks were examined on four different types of shift work regimes. The first regime was a standard eight-hour shift work system, and the other three were non-conventional shift work regimes. Participants (n = 12 per regime) were required to complete one day shift followed by four night shifts, where testing occurred before and after each shift and four times within each shift. The cognitive test tasks revealing sensitivity to fatigue included: visual detection test task, reading test task, memory test task, tapping test task, neural control test task and simple reaction time test task. The testing of Phase 2 was conducted in three different companies, where each performed a different type of rotational shift work. The six cognitive test tasks validated for mental fatigue in Phase 1 were tested before and after work for each shift type within the rotational shift work system adopted by each company. Company A (n = 18) and Company B (n = 24) performed two-shift rotational shift work systems, where the shift length of Company A was 12-hours and the shift length of Company B was irregular hours. Company C (n = 21) performed an eight-hour three-shift rotational shift work system. Nine parameters revealed fatiguing effects and were inserted into the assessment tool, five of which provided information on a specific cognitive function: error rate for visual discrimination, processing time for visual pattern recognition, error rate for visual pattern recognition, impact of rehearsal time on memory recall rate for memory duration and the high-precision condition for motor programming time. The remaining four parameters provided information on general task-related effects: reading speed for reading performance, recall rate for short-term memory, reaction time for motor control and simple reaction time. Therefore, an assessment tool comprising nine parameters was validated for mental fatigue applied to rotational shift work, where five of the parameters were able to isolate exactly where fatigue was occurring during human information processing and the other four parameters were able to assess fatigue occurring throughout the human information processing chain.
- Full Text:
The effects of booster breaks during a sedentary night shift on physiological, psychomotor, psycho-physiological, and cognitive performance over a 3 night shift habituation phase
- Authors: Lombard, Wesley Ross
- Date: 2010
- Subjects: Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5116 , http://hdl.handle.net/10962/d1005194 , Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Description: Despite extensive research into shift work, workers working under rotating shift conditions are still plagued by the effects of the desynchronisation resulting from working against their natural circadian rhythms. Additionally, modern industries are shifting towards tasks requiring greater cognitive demand with less manual labour incorporated into the tasks. Research into operator based tasks, and hence those of a sedentary cognitive base both during day and night shifts, has been focusing on the effectiveness of the standard rest/break schedule. Research indicating that the standard rest break schedule is often ineffective in eliminating operator discomfort and performance deterioration, with these affects argued to be more pronounced during a night shift schedule. Therefore current research set out to investigate alternative rest break schedules, incorporating a short bout of physical activity and stretching exercises which are proposed to enhance performance and subjective mood, while eliminating operator discomfort for sedentary based cognitive tasks. Three conditions were tested during a three day habituation shift cycle within a laboratory, incorporating two night shift groups (control and experimental) and a control day shift group. Twelve subjects made up each group, with the two night shift groups completing the shift schedule together. The control groups followed a typical 8 hour shift schedule while the experimental group performed a booster break (exercise and stretches) activity for 7.5 minutes every hour during the night shift schedule. Over the course of the shift, subjects completed a battery of six tests providing data on physiological measurements (heart rate and temperature), performance criteria (reaction time responses, memory and neurobiological) and subjective measures. Responses obtained for all the different parameters measured indicated a strong circadian influence for the majority of the variables, indicating the course of natural down regulation within physiological and performance criteria over the night shift. The booster break significantly improved reaction time performance, subjective ratings and resulted in a high sustainable activity level. Day shift comparisons indicating that within subjective measures and reaction time performance, the booster break resulted in similar responses to those of the day shift workers, while the control night shift groups reported significantly lowers results. Additionally, the booster break had positive influences during the circadian nadir, significantly improving parameters of performance and subjective ratings of sleepiness. The results of this study indicating which variables are strong predictors and indicators of the oscillations in performance and subjective ratings due to the circadian changes. The booster break interventions had positive effects on subjective ratings and reaction time performance, while also being argued to decrease the burden placed on the cardiac system as a result of increased sympathetic tone during the night shift, while additionally resulting in similar responses to those of day shift workers. Further studies are required, however, to provide conclusive evidence particularly within a working situation over a longer shift schedule.
- Full Text:
- Authors: Lombard, Wesley Ross
- Date: 2010
- Subjects: Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5116 , http://hdl.handle.net/10962/d1005194 , Night work , Shift systems , Performance , Exercise , Exercise -- Physiological aspects , Exercise -- Psychological aspects , Cognition -- Effect of exercise on , Motor ability
- Description: Despite extensive research into shift work, workers working under rotating shift conditions are still plagued by the effects of the desynchronisation resulting from working against their natural circadian rhythms. Additionally, modern industries are shifting towards tasks requiring greater cognitive demand with less manual labour incorporated into the tasks. Research into operator based tasks, and hence those of a sedentary cognitive base both during day and night shifts, has been focusing on the effectiveness of the standard rest/break schedule. Research indicating that the standard rest break schedule is often ineffective in eliminating operator discomfort and performance deterioration, with these affects argued to be more pronounced during a night shift schedule. Therefore current research set out to investigate alternative rest break schedules, incorporating a short bout of physical activity and stretching exercises which are proposed to enhance performance and subjective mood, while eliminating operator discomfort for sedentary based cognitive tasks. Three conditions were tested during a three day habituation shift cycle within a laboratory, incorporating two night shift groups (control and experimental) and a control day shift group. Twelve subjects made up each group, with the two night shift groups completing the shift schedule together. The control groups followed a typical 8 hour shift schedule while the experimental group performed a booster break (exercise and stretches) activity for 7.5 minutes every hour during the night shift schedule. Over the course of the shift, subjects completed a battery of six tests providing data on physiological measurements (heart rate and temperature), performance criteria (reaction time responses, memory and neurobiological) and subjective measures. Responses obtained for all the different parameters measured indicated a strong circadian influence for the majority of the variables, indicating the course of natural down regulation within physiological and performance criteria over the night shift. The booster break significantly improved reaction time performance, subjective ratings and resulted in a high sustainable activity level. Day shift comparisons indicating that within subjective measures and reaction time performance, the booster break resulted in similar responses to those of the day shift workers, while the control night shift groups reported significantly lowers results. Additionally, the booster break had positive influences during the circadian nadir, significantly improving parameters of performance and subjective ratings of sleepiness. The results of this study indicating which variables are strong predictors and indicators of the oscillations in performance and subjective ratings due to the circadian changes. The booster break interventions had positive effects on subjective ratings and reaction time performance, while also being argued to decrease the burden placed on the cardiac system as a result of increased sympathetic tone during the night shift, while additionally resulting in similar responses to those of day shift workers. Further studies are required, however, to provide conclusive evidence particularly within a working situation over a longer shift schedule.
- Full Text:
- «
- ‹
- 1
- ›
- »