Tomographic imaging of East African equatorial ionosphere and study of equatorial plasma bubbles
- Authors: Giday, Nigussie Mezgebe
- Date: 2018
- Subjects: Ionosphere -- Africa, Central , Tomography -- Africa, Central , Global Positioning System , Neural networks (Computer science) , Space environment , Multi-Instrument Data Analysis System (MIDAS) , Equatorial plasma bubbles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63980 , vital:28516
- Description: In spite of the fact that the African ionospheric equatorial region has the largest ground footprint along the geomagnetic equator, it has not been well studied due to the absence of adequate ground-based instruments. This thesis presents research on both tomographic imaging of the African equatorial ionosphere and the study of the ionospheric irregularities/equatorial plasma bubbles (EPBs) under varying geomagnetic conditions. The Multi-Instrument Data Analysis System (MIDAS), an inversion algorithm, was investigated for its validity and ability as a tool to reconstruct multi-scaled ionospheric structures for different geomagnetic conditions. This was done for the narrow East African longitude sector with data from the available ground Global Positioning Sys-tem (GPS) receivers. The MIDAS results were compared to the results of two models, namely the IRI and GIM. MIDAS results compared more favourably with the observation vertical total electron content (VTEC), with a computed maximum correlation coefficient (r) of 0.99 and minimum root-mean-square error (RMSE) of 2.91 TECU, than did the results of the IRI-2012 and GIM models with maximum r of 0.93 and 0.99, and minimum RMSE of 13.03 TECU and 6.52 TECU, respectively, over all the test stations and validation days. The ability of MIDAS to reconstruct storm-time TEC was also compared with the results produced by the use of a Artificial Neural Net-work (ANN) for the African low- and mid-latitude regions. In terms of latitude, on average,MIDAS performed 13.44 % better than ANN in the African mid-latitudes, while MIDAS under performed in low-latitudes. This thesis also reports on the effects of moderate geomagnetic conditions on the evolution of EPBs and/or ionospheric irregularities during their season of occurrence using data from (or measurements by) space- and ground-based instruments for the east African equatorial sector. The study showed that the strength of daytime equatorial electrojet (EEJ), the steepness of the TEC peak-to-trough gradient and/or the meridional/transequatorial thermospheric winds sometimes have collective/interwoven effects, while at other times one mechanism dominates. In summary, this research offered tomographic results that outperform the results of the commonly used (“standard”) global models (i.e. IRI and GIM) for a longitude sector of importance to space weather, which has not been adequately studied due to a lack of sufficient instrumentation.
- Full Text:
- Authors: Giday, Nigussie Mezgebe
- Date: 2018
- Subjects: Ionosphere -- Africa, Central , Tomography -- Africa, Central , Global Positioning System , Neural networks (Computer science) , Space environment , Multi-Instrument Data Analysis System (MIDAS) , Equatorial plasma bubbles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/63980 , vital:28516
- Description: In spite of the fact that the African ionospheric equatorial region has the largest ground footprint along the geomagnetic equator, it has not been well studied due to the absence of adequate ground-based instruments. This thesis presents research on both tomographic imaging of the African equatorial ionosphere and the study of the ionospheric irregularities/equatorial plasma bubbles (EPBs) under varying geomagnetic conditions. The Multi-Instrument Data Analysis System (MIDAS), an inversion algorithm, was investigated for its validity and ability as a tool to reconstruct multi-scaled ionospheric structures for different geomagnetic conditions. This was done for the narrow East African longitude sector with data from the available ground Global Positioning Sys-tem (GPS) receivers. The MIDAS results were compared to the results of two models, namely the IRI and GIM. MIDAS results compared more favourably with the observation vertical total electron content (VTEC), with a computed maximum correlation coefficient (r) of 0.99 and minimum root-mean-square error (RMSE) of 2.91 TECU, than did the results of the IRI-2012 and GIM models with maximum r of 0.93 and 0.99, and minimum RMSE of 13.03 TECU and 6.52 TECU, respectively, over all the test stations and validation days. The ability of MIDAS to reconstruct storm-time TEC was also compared with the results produced by the use of a Artificial Neural Net-work (ANN) for the African low- and mid-latitude regions. In terms of latitude, on average,MIDAS performed 13.44 % better than ANN in the African mid-latitudes, while MIDAS under performed in low-latitudes. This thesis also reports on the effects of moderate geomagnetic conditions on the evolution of EPBs and/or ionospheric irregularities during their season of occurrence using data from (or measurements by) space- and ground-based instruments for the east African equatorial sector. The study showed that the strength of daytime equatorial electrojet (EEJ), the steepness of the TEC peak-to-trough gradient and/or the meridional/transequatorial thermospheric winds sometimes have collective/interwoven effects, while at other times one mechanism dominates. In summary, this research offered tomographic results that outperform the results of the commonly used (“standard”) global models (i.e. IRI and GIM) for a longitude sector of importance to space weather, which has not been adequately studied due to a lack of sufficient instrumentation.
- Full Text:
Optimizing MIDAS III over South Africa
- Authors: Giday, Nigussie Mezgebe
- Date: 2014
- Subjects: Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5517 , http://hdl.handle.net/10962/d1011277 , Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Description: In this thesis an ionospheric tomographic algorithm called Multi-Instrument Data Anal- ysis System (MIDAS) is used to reconstruct electron density profiles using the Global Positioning System (GPS) data recorded from 53 GPS receivers over the South African region. MIDAS, developed by the Invert group at the University of Bath in the UK, is an inversion algorithm that produces a time dependent 3D image of the electron density of the ionosphere. GPS receivers record the time delay and phase advance of the trans- ionospheric GPS signals that traverse through the ionosphere from which the ionospheric parameter called Total Electron Content (TEC) can be computed. TEC, the line integral of the electron density along the satellite-receiver signal path, is ingested by ionospheric tomographic algorithms such as MIDAS to produce a time dependent 3D electron density profile. In order to validate electron density profiles from MIDAS, MIDAS derived NmF2 values were compared with ionosonde derived NmF2 values extracted from their respective 1D electron density profiles at 15 minute intervals for all four South African ionosonde stations (Grahamstown, Hermanus, Louisvale, and Madimbo). MIDAS 2D images of the electron density showed good diurnal and seasonal patterns; where a comparison of the 2D images at 12h00 UT for all the validation days exhibited maximum electron concentration during the autumn and summer and a minimum during the winter. A root mean square error (rmse) value as small as 0.88x 10¹¹[el=m³] was calculated for the Louisvale ionosonde station during the winter season and a maximum rmse value of 1.92x 10¹¹[el=m³] was ob- tained during the autumn season. The r² values were the least during the autumn and relatively large during summer and winter; similarly the rmse values were found to be a maximum during the autumn and a minimum during the winter indicating that MIDAS performs better during the winter than during the autumn and spring seasons. It is also observed that MIDAS performs better at Louisvale and Madimbo than at Grahamstown and Hermanus. In conclusion, the MIDAS reconstruction has showed good agreement with the ionosonde measurements; therefore, MIDAS can be considered a useful tool to study the ionosphere over the South African region.
- Full Text:
- Authors: Giday, Nigussie Mezgebe
- Date: 2014
- Subjects: Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5517 , http://hdl.handle.net/10962/d1011277 , Multi-Instrument Data Analysis System (MIDAS) , Global Positioning System , Ionosphere -- South Africa , Ionospheric electron density -- South Africa , Ionosondes -- South Africa , Tomography -- Scientific applications -- South Africa
- Description: In this thesis an ionospheric tomographic algorithm called Multi-Instrument Data Anal- ysis System (MIDAS) is used to reconstruct electron density profiles using the Global Positioning System (GPS) data recorded from 53 GPS receivers over the South African region. MIDAS, developed by the Invert group at the University of Bath in the UK, is an inversion algorithm that produces a time dependent 3D image of the electron density of the ionosphere. GPS receivers record the time delay and phase advance of the trans- ionospheric GPS signals that traverse through the ionosphere from which the ionospheric parameter called Total Electron Content (TEC) can be computed. TEC, the line integral of the electron density along the satellite-receiver signal path, is ingested by ionospheric tomographic algorithms such as MIDAS to produce a time dependent 3D electron density profile. In order to validate electron density profiles from MIDAS, MIDAS derived NmF2 values were compared with ionosonde derived NmF2 values extracted from their respective 1D electron density profiles at 15 minute intervals for all four South African ionosonde stations (Grahamstown, Hermanus, Louisvale, and Madimbo). MIDAS 2D images of the electron density showed good diurnal and seasonal patterns; where a comparison of the 2D images at 12h00 UT for all the validation days exhibited maximum electron concentration during the autumn and summer and a minimum during the winter. A root mean square error (rmse) value as small as 0.88x 10¹¹[el=m³] was calculated for the Louisvale ionosonde station during the winter season and a maximum rmse value of 1.92x 10¹¹[el=m³] was ob- tained during the autumn season. The r² values were the least during the autumn and relatively large during summer and winter; similarly the rmse values were found to be a maximum during the autumn and a minimum during the winter indicating that MIDAS performs better during the winter than during the autumn and spring seasons. It is also observed that MIDAS performs better at Louisvale and Madimbo than at Grahamstown and Hermanus. In conclusion, the MIDAS reconstruction has showed good agreement with the ionosonde measurements; therefore, MIDAS can be considered a useful tool to study the ionosphere over the South African region.
- Full Text:
- «
- ‹
- 1
- ›
- »