Swift heavy ion radiation damage in nanocrystalline ZrN
- Authors: Janse van Vuuren, Arno
- Date: 2014
- Subjects: Zirconium -- Effect of radiation on , Nanocrystals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10550 , http://hdl.handle.net/10948/d1020147
- Description: ZrN has been identified as a candidate material for use as an inert matrix fuel host for the transmutation of plutonium and minor actinides. These materials will be subjected to large amounts of different types of radiation within the nuclear reactor core. The types of radiation include fission fragments and alpha-particles amongst others. Recent studies suggest that nanocrystalline material may have a higher radiation tolerance than their polycrystalline and bulk counterparts. Some studies have shown that swift heavy ion irradiation may also significantly modulate hydrogen and helium behaviour in materials. This phenomenon is also of considerable practical interest for inert matrix fuel hosts, since these materials accumulate helium via (n,) reactions and will also be subjected to irradiation by fission fragments. The aim of this investigation is therefore to study the effects of fission fragment and alpha particle irradiation on nanocrystalline ZrN. In an effort to simulate the effects of fission fragments on nanocrystalline zirconium nitride different layers (on a Si substrate) of various thicknesses (0.1, 3, 10 and 20 μm) were irradiated with 167 MeV Xe, 250 MeV Kr and 695 MeV Bi ions to fluences in the range from 31012 to 2.61015 cm-2 for Xe, 1×1013 to 7.06×1013 cm-2 for Kr and 1012 to 1013 cm-2 for Bi. The purpose of this irradiation is to simulate the effects of fission fragments on nanocrystalline ZrN. In order to simulate the effects of alpha particles and the combined effects of alpha particles and fission fragments on nanocrystalline ZrN it was irradiated with 30 keV He to fluences between 1016 and 5×1016 cm-2, 167 MeV Xe to fluences between 5×1013 and 1014 cm-2 and also 695 MeV Bi to a fluence of 1.5×1013 cm-2. He/Bi and He/Xe irradiated samples were annealed at temperatures between 600 and 1000 °C. The different irradiated layers were subsequently analysed via X-ray diffraction (XRD), μ-Raman, transmission electron microscopy (TEM) and nano indentation hardness testing (NIH) techniques. XRD, TEM, μ-Raman and NIH results indicate that ZrN has a very high tolerance to the effects of high energy irradiation. The microstructure of nanocrystalline ZrN remains unaffected by electronic excitation effects even at a very high stopping power. TEM and SEM results indicated that post irradiation heat treatment induces exfoliation at a depth that corresponds to the end-of-range of 30 keV He ions. Results from He/Xe irradiated samples revealed that electronic excitation effects, due to Xe ions, suppress helium blister formation and consequently the exfoliation processes. He/Bi samples however do not show the same effects, but this is possibly due to the lower fluence of Bi ions. This suggests that nanocrystalline ZrN is prone to the formation of He blisters which may ultimately lead material failure. These effects may however be mitigated by electronic excitation effects from certain SHIs.
- Full Text:
- Date Issued: 2014
- Authors: Janse van Vuuren, Arno
- Date: 2014
- Subjects: Zirconium -- Effect of radiation on , Nanocrystals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10550 , http://hdl.handle.net/10948/d1020147
- Description: ZrN has been identified as a candidate material for use as an inert matrix fuel host for the transmutation of plutonium and minor actinides. These materials will be subjected to large amounts of different types of radiation within the nuclear reactor core. The types of radiation include fission fragments and alpha-particles amongst others. Recent studies suggest that nanocrystalline material may have a higher radiation tolerance than their polycrystalline and bulk counterparts. Some studies have shown that swift heavy ion irradiation may also significantly modulate hydrogen and helium behaviour in materials. This phenomenon is also of considerable practical interest for inert matrix fuel hosts, since these materials accumulate helium via (n,) reactions and will also be subjected to irradiation by fission fragments. The aim of this investigation is therefore to study the effects of fission fragment and alpha particle irradiation on nanocrystalline ZrN. In an effort to simulate the effects of fission fragments on nanocrystalline zirconium nitride different layers (on a Si substrate) of various thicknesses (0.1, 3, 10 and 20 μm) were irradiated with 167 MeV Xe, 250 MeV Kr and 695 MeV Bi ions to fluences in the range from 31012 to 2.61015 cm-2 for Xe, 1×1013 to 7.06×1013 cm-2 for Kr and 1012 to 1013 cm-2 for Bi. The purpose of this irradiation is to simulate the effects of fission fragments on nanocrystalline ZrN. In order to simulate the effects of alpha particles and the combined effects of alpha particles and fission fragments on nanocrystalline ZrN it was irradiated with 30 keV He to fluences between 1016 and 5×1016 cm-2, 167 MeV Xe to fluences between 5×1013 and 1014 cm-2 and also 695 MeV Bi to a fluence of 1.5×1013 cm-2. He/Bi and He/Xe irradiated samples were annealed at temperatures between 600 and 1000 °C. The different irradiated layers were subsequently analysed via X-ray diffraction (XRD), μ-Raman, transmission electron microscopy (TEM) and nano indentation hardness testing (NIH) techniques. XRD, TEM, μ-Raman and NIH results indicate that ZrN has a very high tolerance to the effects of high energy irradiation. The microstructure of nanocrystalline ZrN remains unaffected by electronic excitation effects even at a very high stopping power. TEM and SEM results indicated that post irradiation heat treatment induces exfoliation at a depth that corresponds to the end-of-range of 30 keV He ions. Results from He/Xe irradiated samples revealed that electronic excitation effects, due to Xe ions, suppress helium blister formation and consequently the exfoliation processes. He/Bi samples however do not show the same effects, but this is possibly due to the lower fluence of Bi ions. This suggests that nanocrystalline ZrN is prone to the formation of He blisters which may ultimately lead material failure. These effects may however be mitigated by electronic excitation effects from certain SHIs.
- Full Text:
- Date Issued: 2014
Photophysical studies of zinc and indium tetraaminophthalocyanines in the presence of CdTe quantum dots
- Authors: Britton, Jonathan
- Date: 2010
- Subjects: Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4332 , http://hdl.handle.net/10962/d1004993 , Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Description: CdTe QDs capped with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) were covalently linked to zinc and indium tetraaminophthalocyanines (TAPcs) using N-ethyl-N(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) as the coupling agents. The results presented give evidence in favour of formation of an amide bond between the MTAPc and CdTe QDs. Both the linked ZnTAPc–QD complexes and the mixture of QDs and ZnTAPc (without chemical linking) showed Förster resonance energy transfer (FRET), though the linked showed less FRET, whereas the QD interactions with InTAPc yielded no evidence of FRET. Both MTAPcs quenched the QDs emission, with quenching constants of the order of 103–104M−1, binding constants of the order of 108-1010M-1 and the number of binding sites for the MTAPc upon the QD being 2. High energy transfer efficiencies were obtained (in some cases as high as 93%), due to the low donor to acceptor distances. Lastly, both MTAPc were shown to be poor optical limiters because their imaginary third-order susceptibility (Im[χ(3)]) was of the order of 10-17-10-16 (optimal range is 10-9-10-11), the hyperpolarizability (γ) of the order of 10-37-10-36 (optimal range is 10-29-10-34) and the k values were above one but below ten.
- Full Text:
- Date Issued: 2010
- Authors: Britton, Jonathan
- Date: 2010
- Subjects: Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4332 , http://hdl.handle.net/10962/d1004993 , Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Description: CdTe QDs capped with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) were covalently linked to zinc and indium tetraaminophthalocyanines (TAPcs) using N-ethyl-N(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) as the coupling agents. The results presented give evidence in favour of formation of an amide bond between the MTAPc and CdTe QDs. Both the linked ZnTAPc–QD complexes and the mixture of QDs and ZnTAPc (without chemical linking) showed Förster resonance energy transfer (FRET), though the linked showed less FRET, whereas the QD interactions with InTAPc yielded no evidence of FRET. Both MTAPcs quenched the QDs emission, with quenching constants of the order of 103–104M−1, binding constants of the order of 108-1010M-1 and the number of binding sites for the MTAPc upon the QD being 2. High energy transfer efficiencies were obtained (in some cases as high as 93%), due to the low donor to acceptor distances. Lastly, both MTAPc were shown to be poor optical limiters because their imaginary third-order susceptibility (Im[χ(3)]) was of the order of 10-17-10-16 (optimal range is 10-9-10-11), the hyperpolarizability (γ) of the order of 10-37-10-36 (optimal range is 10-29-10-34) and the k values were above one but below ten.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »