Determination of nonlinear optical properties of phthalocyanine regioisomers using computational models
- Date: 2020
- Subjects: Electrochemistry , Phthalocyanines , Nanoparticles , Nonlinear optics , Nonlinear optical spectroscopy , Refraction
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/166197 , vital:41337
- Description: This work investigates the effects of the nonlinear optical properties of four different constitutional isomers (C4h, C2v, Cs, and D2h) of a series of tetrasubstituted phthalocyanines (free-base 3-4-tert-butylphenoxyether phthalocyanines, free-base 4-4-tertbutylphenoxyether phthalocyanines, SnCl2 tetra substituted 3-4-tert-butylphenoxyether phthalocyanine, and SnCl2 tetra substituted 4-4-tert-butylphenoxyether phthalocyanine). The properties investigated were the real and imaginary components of the 3rd order hyperpolarizability, as well as the excited state absorption and refraction cross sections. The investigations were performed with a z-scan over a range of laser beam intensities. This work determined the imaginary component of the 3rd order hyperpolarizability for the free-base and SnCl2 3-4-tert-butylphenoxyether phthalocyanines and 4-4-tert-butylphenoxyether phthalocyanines to be highly dependent on the excited state cross sections. The refraction caused due to the real component of the 3rd order hyperpolarizability of the phthalocyanines was also investigated, however, the values found were strongly dependent on the laser beam intensity and the cause of this was investigated. A Five-level model was developed and run on GPGPU computing devices in order to isolate the absorption and refractive cross sections. Theeffects of the regio substitution on the excited state cross sections were also investigated, and the 1st singlet excited state and 1st triplet state absorption cross sections were calculated for all constitutional isomers. It was found that the symmetry of the constitutional isomers have a disproportionately large effect on the excited state absorption when compared to the ground state absorption. The nonlinear refractive properties of all constitutional isomers were also investigated, and the values of the parametric susceptibility are reported herein. The nonlinear refraction was found to have less effect than was seen in the nonlinear absorption. The 1st singlet excited state and 1st triplet state refractive cross sections of all constitutional isomer was determined. The results indicated that if more than one excited state was present and contributing to the nonlinear refraction, then more data than was collected here would be required. However, the 1st singlet excited state cross section were successfully determined for the free-base constitutional isomers. This work concluded that the region substitution affected the excited states more than the ground state.
- Full Text:
- Date: 2020
- Subjects: Electrochemistry , Phthalocyanines , Nanoparticles , Nonlinear optics , Nonlinear optical spectroscopy , Refraction
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/166197 , vital:41337
- Description: This work investigates the effects of the nonlinear optical properties of four different constitutional isomers (C4h, C2v, Cs, and D2h) of a series of tetrasubstituted phthalocyanines (free-base 3-4-tert-butylphenoxyether phthalocyanines, free-base 4-4-tertbutylphenoxyether phthalocyanines, SnCl2 tetra substituted 3-4-tert-butylphenoxyether phthalocyanine, and SnCl2 tetra substituted 4-4-tert-butylphenoxyether phthalocyanine). The properties investigated were the real and imaginary components of the 3rd order hyperpolarizability, as well as the excited state absorption and refraction cross sections. The investigations were performed with a z-scan over a range of laser beam intensities. This work determined the imaginary component of the 3rd order hyperpolarizability for the free-base and SnCl2 3-4-tert-butylphenoxyether phthalocyanines and 4-4-tert-butylphenoxyether phthalocyanines to be highly dependent on the excited state cross sections. The refraction caused due to the real component of the 3rd order hyperpolarizability of the phthalocyanines was also investigated, however, the values found were strongly dependent on the laser beam intensity and the cause of this was investigated. A Five-level model was developed and run on GPGPU computing devices in order to isolate the absorption and refractive cross sections. Theeffects of the regio substitution on the excited state cross sections were also investigated, and the 1st singlet excited state and 1st triplet state absorption cross sections were calculated for all constitutional isomers. It was found that the symmetry of the constitutional isomers have a disproportionately large effect on the excited state absorption when compared to the ground state absorption. The nonlinear refractive properties of all constitutional isomers were also investigated, and the values of the parametric susceptibility are reported herein. The nonlinear refraction was found to have less effect than was seen in the nonlinear absorption. The 1st singlet excited state and 1st triplet state refractive cross sections of all constitutional isomer was determined. The results indicated that if more than one excited state was present and contributing to the nonlinear refraction, then more data than was collected here would be required. However, the 1st singlet excited state cross section were successfully determined for the free-base constitutional isomers. This work concluded that the region substitution affected the excited states more than the ground state.
- Full Text:
Effect of the nature of nanoparticles on the photophysicochemical properties and photodynamic antimicrobial chemotherapy of phthalocyanines
- Authors: Magadla, Aviwe
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/123107 , vital:35406
- Description: In this work, the syntheses and characterisation of Zn monocaffeic acid tri–tert–butyl phthalocyanine (1), Zn monocarboxyphenoxy tri– tert–butylphenoxyl phthalocyanine (2), tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (3) and tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (5) are presented. Complexes 3 and 5 were further quartenised with 1,3- propanesultone to form corresponding complexes (4) and (6), respectively. Complexes 1 and 2 were covalently linked to amino functionalised nanoparticles (NPs). Complexes 3, 4, 5 and 6 where linked to oleic acid/oleylamine capped (OLA/OLM) silver-iron dimers (Ag-Fe3O4 OLA/OLM) and silver-iron core shell (Ag@Fe3O4 OLA/OLM) NPs via interaction between the nanoparticles and the imino group on the phthalocyanines. The phthalocyanine-NP conjugates afforded an increase in triplet quantum yields with a corresponding decrease in fluorescence quantum yield as compared to the phthalocyanine complexes alone. Complexes 3, 4 and their conjugates were then used for photodynamic antimicrobial chemotherapy on E. coli. The zwitterionic photosensitiser 4 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
- Authors: Magadla, Aviwe
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/123107 , vital:35406
- Description: In this work, the syntheses and characterisation of Zn monocaffeic acid tri–tert–butyl phthalocyanine (1), Zn monocarboxyphenoxy tri– tert–butylphenoxyl phthalocyanine (2), tetrakis phenoxy N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (3) and tetrakis N,N-dimethyl-4-(methylimino) phthalocyanine indium (III) chloride (5) are presented. Complexes 3 and 5 were further quartenised with 1,3- propanesultone to form corresponding complexes (4) and (6), respectively. Complexes 1 and 2 were covalently linked to amino functionalised nanoparticles (NPs). Complexes 3, 4, 5 and 6 where linked to oleic acid/oleylamine capped (OLA/OLM) silver-iron dimers (Ag-Fe3O4 OLA/OLM) and silver-iron core shell (Ag@Fe3O4 OLA/OLM) NPs via interaction between the nanoparticles and the imino group on the phthalocyanines. The phthalocyanine-NP conjugates afforded an increase in triplet quantum yields with a corresponding decrease in fluorescence quantum yield as compared to the phthalocyanine complexes alone. Complexes 3, 4 and their conjugates were then used for photodynamic antimicrobial chemotherapy on E. coli. The zwitterionic photosensitiser 4 and its conjugates showed better efficiency for photodynamic antimicrobial chemotherapy compared to their neutral counterparts.
- Full Text:
In vitro susceptibility of Staphylococcus aureus to porphyrin-silver mediated photodynamic antimicrobial chemotherapy
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
Metallophthalocyanines linked to metal nanoparticles and folic acid for use in photodynamic therapy of cancer and photoinactivation of bacterial microorganisms.
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
- Authors: Matlou, Gauta Gold
- Date: 2020
- Subjects: Cancer -- Photochemotherapy , Nanoparticles , Phthalocyanines , Anti-infective agents -- Therapeutic use , Photochemotherapy , Photochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166540 , vital:41377
- Description: This thesis presents on the synthesis and characterization of novel asymmetric and symmetrical metallophthalocyanines (MPcs) substituted with carboxylic acid functional groups and centrally metallated with zinc and indium. The MPcs are further covalently linked to cysteine capped silver nanoparticles (cys-AgNPs), amino functionalized magnetic nanoparticles (AMNPs) and folic acid (FA) through an amide bond between the carboxylic group of MPcs and the amino group of FA, cys-AgNPs or AMNPs. The covalent linkage of MPcs to FA improved the water solubility of MPcs and allowed for singlet oxygen quantum yield determination in water. Asymmetric MPcs and their conjugates were found to have improved photochemical and photophysical properties compared to symmetrical MPcs and their conjugates. The heavy atom effect of AMNPs and AgNPs improved the triplet and singlet oxygen quantum yields of MPcs. MPcs and their conjugates (MPc-FA, MPc-AMNPs, MPc-AgNPs) were found to have lower in vitro dark cytotoxicity and higher photodynamic therapy (PDT) activity on MCF-7 breast cancer cells. The water soluble MPc-FA had better PDT activity when compared to MPc-AMNPs due to the active targeting of folic acid-folate binding on cancer cell surface. MPcs and MPc-AgNPs conjugates also showed excellent in vitro cytotoxicity on S. aureus under light irradiation compared to dark cytotoxicity. The photosensitizing properties of MPcs and their conjugates are demonstrated for the first time in this thesis, both on breast cancer cells (MCF-7) through photodynamic therapy and on microorganisms (S. aureus) through photodynamic antimicrobial chemotherapy.
- Full Text:
Photocatalysis of 4-chloro and 4-nonylphenols using novel symmetric phthalocyanines and asymmetric porphyrin supported on polyacrylonitrite nanofibres
- Authors: Jones, Benjamin Martin
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Electrospinning , Porphyrins , Nanofibers , Photocatalysis , Photocatalysis -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164770 , vital:41163
- Description: This work explores the synthesis and characterisation of novel symmetrical phthalocyanines and novel asymmetric porphyrins that have been embedded or linked respectively,and electrospun into fibres for application in the photocatalysis of environmental pollutants. The phthalocyanines contain pyrrole moieties without hetero atom linkers to maintain a rigid structure. The porphyrin contains a carboxy moiety utilized to construct an amide bond between the complex and the polymer prior to the spinning process. The new compounds were characterized by elemental analyses, proton nuclear magnetic resonance (HNMR)Fourier-transform infrared spectroscopy (FTIR), MALDI-TOF and UV-vis spectroscopy. The general trends of fluorescence, triplet and singlet oxygen quantum yields are described as well as their appropriate lifetimes. The photocatalytic activity of phthalocyanine embedded fibres were compared against those that had been dyed. Unfortunately, during the degradation process, the dyed fibres leeched compound and the studies could not be continued. It was seen that the porphyrin fibres linked to the polymer showed the most efficient photocatalytic activity against 4-cholorphenol and 4-nonylphenol due to irradiation at lower wavelengths consequently having higher frequencies and transferring more energy.
- Full Text:
- Authors: Jones, Benjamin Martin
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Electrospinning , Porphyrins , Nanofibers , Photocatalysis , Photocatalysis -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164770 , vital:41163
- Description: This work explores the synthesis and characterisation of novel symmetrical phthalocyanines and novel asymmetric porphyrins that have been embedded or linked respectively,and electrospun into fibres for application in the photocatalysis of environmental pollutants. The phthalocyanines contain pyrrole moieties without hetero atom linkers to maintain a rigid structure. The porphyrin contains a carboxy moiety utilized to construct an amide bond between the complex and the polymer prior to the spinning process. The new compounds were characterized by elemental analyses, proton nuclear magnetic resonance (HNMR)Fourier-transform infrared spectroscopy (FTIR), MALDI-TOF and UV-vis spectroscopy. The general trends of fluorescence, triplet and singlet oxygen quantum yields are described as well as their appropriate lifetimes. The photocatalytic activity of phthalocyanine embedded fibres were compared against those that had been dyed. Unfortunately, during the degradation process, the dyed fibres leeched compound and the studies could not be continued. It was seen that the porphyrin fibres linked to the polymer showed the most efficient photocatalytic activity against 4-cholorphenol and 4-nonylphenol due to irradiation at lower wavelengths consequently having higher frequencies and transferring more energy.
- Full Text:
- «
- ‹
- 1
- ›
- »