A multispectral and machine learning approach to early stress classification in plants
- Authors: Poole, Louise Carmen
- Date: 2022-04-06
- Subjects: Machine learning , Neural networks (Computer science) , Multispectral imaging , Image processing , Plant stress detection
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232410 , vital:49989
- Description: Crop loss and failure can impact both a country’s economy and food security, often to devastating effects. As such, the importance of successfully detecting plant stresses early in their development is essential to minimize spread and damage to crop production. Identification of the stress and the stress-causing agent is the most critical and challenging step in plant and crop protection. With the development of and increase in ease of access to new equipment and technology in recent years, the use of spectroscopy in the early detection of plant diseases has become notably popular. This thesis narrows down the most suitable multispectral imaging techniques and machine learning algorithms for early stress detection. Datasets were collected of visible images and multispectral images. Dehydration was selected as the plant stress type for the main experiments, and data was collected from six plant species typically used in agriculture. Key contributions of this thesis include multispectral and visible datasets showing plant dehydration as well as a separate preliminary dataset on plant disease. Promising results on dehydration showed statistically significant accuracy improvements in the multispectral imaging compared to visible imaging for early stress detection, with multispectral input obtaining a 92.50% accuracy over visible input’s 77.50% on general plant species. The system was effective at stress detection on known plant species, with multispectral imaging introducing greater improvement to early stress detection than advanced stress detection. Furthermore, strong species discrimination was achieved when exclusively testing either early or advanced dehydration against healthy species. , Thesis (MSc) -- Faculty of Science, Ichthyology & Fisheries Sciences, 2022
- Full Text:
- Authors: Poole, Louise Carmen
- Date: 2022-04-06
- Subjects: Machine learning , Neural networks (Computer science) , Multispectral imaging , Image processing , Plant stress detection
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232410 , vital:49989
- Description: Crop loss and failure can impact both a country’s economy and food security, often to devastating effects. As such, the importance of successfully detecting plant stresses early in their development is essential to minimize spread and damage to crop production. Identification of the stress and the stress-causing agent is the most critical and challenging step in plant and crop protection. With the development of and increase in ease of access to new equipment and technology in recent years, the use of spectroscopy in the early detection of plant diseases has become notably popular. This thesis narrows down the most suitable multispectral imaging techniques and machine learning algorithms for early stress detection. Datasets were collected of visible images and multispectral images. Dehydration was selected as the plant stress type for the main experiments, and data was collected from six plant species typically used in agriculture. Key contributions of this thesis include multispectral and visible datasets showing plant dehydration as well as a separate preliminary dataset on plant disease. Promising results on dehydration showed statistically significant accuracy improvements in the multispectral imaging compared to visible imaging for early stress detection, with multispectral input obtaining a 92.50% accuracy over visible input’s 77.50% on general plant species. The system was effective at stress detection on known plant species, with multispectral imaging introducing greater improvement to early stress detection than advanced stress detection. Furthermore, strong species discrimination was achieved when exclusively testing either early or advanced dehydration against healthy species. , Thesis (MSc) -- Faculty of Science, Ichthyology & Fisheries Sciences, 2022
- Full Text:
Statistical and Mathematical Learning: an application to fraud detection and prevention
- Authors: Hamlomo, Sisipho
- Date: 2022-04-06
- Subjects: Credit card fraud , Bootstrap (Statistics) , Support vector machines , Neural networks (Computer science) , Decision trees , Machine learning , Cross-validation , Imbalanced data
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/233795 , vital:50128
- Description: Credit card fraud is an ever-growing problem. There has been a rapid increase in the rate of fraudulent activities in recent years resulting in a considerable loss to several organizations, companies, and government agencies. Many researchers have focused on detecting fraudulent behaviours early using advanced machine learning techniques. However, credit card fraud detection is not a straightforward task since fraudulent behaviours usually differ for each attempt and the dataset is highly imbalanced, that is, the frequency of non-fraudulent cases outnumbers the frequency of fraudulent cases. In the case of the European credit card dataset, we have a ratio of approximately one fraudulent case to five hundred and seventy-eight non-fraudulent cases. Different methods were implemented to overcome this problem, namely random undersampling, one-sided sampling, SMOTE combined with Tomek links and parameter tuning. Predictive classifiers, namely logistic regression, decision trees, k-nearest neighbour, support vector machine and multilayer perceptrons, are applied to predict if a transaction is fraudulent or non-fraudulent. The model's performance is evaluated based on recall, precision, F1-score, the area under receiver operating characteristics curve, geometric mean and Matthew correlation coefficient. The results showed that the logistic regression classifier performed better than other classifiers except when the dataset was oversampled. , Thesis (MSc) -- Faculty of Science, Statistics, 2022
- Full Text:
- Authors: Hamlomo, Sisipho
- Date: 2022-04-06
- Subjects: Credit card fraud , Bootstrap (Statistics) , Support vector machines , Neural networks (Computer science) , Decision trees , Machine learning , Cross-validation , Imbalanced data
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/233795 , vital:50128
- Description: Credit card fraud is an ever-growing problem. There has been a rapid increase in the rate of fraudulent activities in recent years resulting in a considerable loss to several organizations, companies, and government agencies. Many researchers have focused on detecting fraudulent behaviours early using advanced machine learning techniques. However, credit card fraud detection is not a straightforward task since fraudulent behaviours usually differ for each attempt and the dataset is highly imbalanced, that is, the frequency of non-fraudulent cases outnumbers the frequency of fraudulent cases. In the case of the European credit card dataset, we have a ratio of approximately one fraudulent case to five hundred and seventy-eight non-fraudulent cases. Different methods were implemented to overcome this problem, namely random undersampling, one-sided sampling, SMOTE combined with Tomek links and parameter tuning. Predictive classifiers, namely logistic regression, decision trees, k-nearest neighbour, support vector machine and multilayer perceptrons, are applied to predict if a transaction is fraudulent or non-fraudulent. The model's performance is evaluated based on recall, precision, F1-score, the area under receiver operating characteristics curve, geometric mean and Matthew correlation coefficient. The results showed that the logistic regression classifier performed better than other classifiers except when the dataset was oversampled. , Thesis (MSc) -- Faculty of Science, Statistics, 2022
- Full Text:
- «
- ‹
- 1
- ›
- »