Octa carboxy metal (II) phthalocyanine covalent films as pH sensitive electrochemical sensor for neurotransmitters
- Authors: Moyo, Iphithuli
- Date: 2023-10-13
- Subjects: Phthalocyanines , Thin films , Neurotransmitters , Carboxylic acids
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424525 , vital:72161
- Description: Octa acyl chloride metallophthalocyanines of cobalt (CoOAClPc) and iron (FeOAClPc) were synthesized and characterized using spectroscopic and electrochemical techniques. The metallophthalocyanines were fabricated as thin films onto phenylethylamine (PEA) pre-grafted Au electrode following a covalent amide reaction. The spectroscopic and electrochemical characterization confirmed the modification of the bare Au with PEA monolayer thin film (Au-PEA) and the covalent immobilization of MOAClPc to yield Au-PEA-MOAClPc (where M is Co and Fe). The acyl chloride functional groups were hydrolyzed forming pH sensitive thin films of terminal carboxylic acid (-COOH) functional groups (Au-PEA-MOCAPc). The Au-PEA-MOCAPc electrode exhibited pH selectivity and sensitivity properties towards the negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. The Au-PEA-MOCAPc electrodes were studied for their electrocatalytic and electroanalytical properties towards the detection of catecholamine neurotransmitters; dopamine (DA), epinephrine (EP) and norepinephrine (NOR). The electrodes were further investigated in the screening of ascorbic and uric acids by means of pH sensitive functional groups. The modification process exhibited good reproducibility. Excellent electrocatalytic and electroanalytical properties were observed. The limits of detection (LOD) determined using 3σ/m was found to be 64 nM, 0.22 μM and 0.17 μM for DA, EP and NOR respectively using Au-PEA-CoOCAPc. For Au-PEA-FeOCAPc, the LOD was found to 0.24 μM, 0.45 μM and 0.34 μM for DA, EP and NOR respectively. The Au-PEA-MOCAPc electrodes screened off the strong interferents, ascorbic and uric acid. The Au-PEA-FeOCAPc electrode was evaluated for its potential application in real sample analysis using new born calf serum, and it showed excellent percentage recoveries. , Thesis (MSc) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Authors: Moyo, Iphithuli
- Date: 2023-10-13
- Subjects: Phthalocyanines , Thin films , Neurotransmitters , Carboxylic acids
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424525 , vital:72161
- Description: Octa acyl chloride metallophthalocyanines of cobalt (CoOAClPc) and iron (FeOAClPc) were synthesized and characterized using spectroscopic and electrochemical techniques. The metallophthalocyanines were fabricated as thin films onto phenylethylamine (PEA) pre-grafted Au electrode following a covalent amide reaction. The spectroscopic and electrochemical characterization confirmed the modification of the bare Au with PEA monolayer thin film (Au-PEA) and the covalent immobilization of MOAClPc to yield Au-PEA-MOAClPc (where M is Co and Fe). The acyl chloride functional groups were hydrolyzed forming pH sensitive thin films of terminal carboxylic acid (-COOH) functional groups (Au-PEA-MOCAPc). The Au-PEA-MOCAPc electrode exhibited pH selectivity and sensitivity properties towards the negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. The Au-PEA-MOCAPc electrodes were studied for their electrocatalytic and electroanalytical properties towards the detection of catecholamine neurotransmitters; dopamine (DA), epinephrine (EP) and norepinephrine (NOR). The electrodes were further investigated in the screening of ascorbic and uric acids by means of pH sensitive functional groups. The modification process exhibited good reproducibility. Excellent electrocatalytic and electroanalytical properties were observed. The limits of detection (LOD) determined using 3σ/m was found to be 64 nM, 0.22 μM and 0.17 μM for DA, EP and NOR respectively using Au-PEA-CoOCAPc. For Au-PEA-FeOCAPc, the LOD was found to 0.24 μM, 0.45 μM and 0.34 μM for DA, EP and NOR respectively. The Au-PEA-MOCAPc electrodes screened off the strong interferents, ascorbic and uric acid. The Au-PEA-FeOCAPc electrode was evaluated for its potential application in real sample analysis using new born calf serum, and it showed excellent percentage recoveries. , Thesis (MSc) -- Faculty of Science, Chemistry, 2023
- Full Text:
Design of pH Sensitive Electrochemical Sensor for Catecholamine Neurotransmitters Detection and the Screening Off of Ascorbic Acid
- Tshenkeng, Keamogetse Tebogo Charlotte
- Authors: Tshenkeng, Keamogetse Tebogo Charlotte
- Date: 2021-10-29
- Subjects: Catecholamines , Electrochemical sensors , Neurotransmitters , Vitamin C , Cobalt , Phthalocyanines , Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc)
- Language: English
- Type: thesis , text
- Identifier: http://hdl.handle.net/10962/176921 , vital:42772
- Description: This study presents the synthesis of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) through the cyclotetramerization of 4-(3-carboxyphe-noxy)phthalonitrile and its full characterization using Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis and mass spectrometry. The CoTCPhOPc was then immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA using amide coupling reaction through a reaction with NHS and DCC to obtain Au-PEA-CoTCPhOPc. This yielded pH sensitive thin films due to the terminal carboxylic acid (–COOH) functional groups. Electrochemical and surface characterization was conducted to confirm the modification of the bare Au with PEA thin film (Au-PEA) and amide coupling of CoTCPhOPc (Au-PEA-CoTCPhOPc). The Au-PEA-CoTCPhOPc electrode was shown to possess pH selective properties towards negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. Au-PEA-CoTCPhOPc electrode surface enabled the detection of catecholamine neurotransmitters (dopamine, norepinephrine and epinephrine) and the screening off of ascorbic acid by means of pH sensitive functional groups. Bare Au and Au-PEA electrodes exhibited electro-oxidation and electroreduction of catecholamine neuro-transmitters and ascorbic acid at higher potentials compared to Au-PEA-CoTCPhOPc. There was no electro-oxidation or electroreduction of ascorbic acid at Au-PEA-CoTCPhOPc. For Au-PEA-CoTCPhOPc, excellent electrocatalytic oxidation with the limit of detection (LoD) determined using 3σ was found to be 1.32 (0.95), 2.11 (1.78) and 3.08 μM for electro-oxidation and electroreduction (in brackets) of dopamine, norepinephrine and epinephrine respectively. The limit of quantification (LoQ) was determined using 10σ and found to be 4.41 (3.17), 7.02 (5.93) and 10.3 μM electro-oxidation and electroreduction (in brackets) for dopamine, norepinephrine and epinephrine respectively. The Au-PEA-CoTCPhOPc thin film was shown to screen off ascorbic acid as no electrocatalytic oxidation was observed for up to 100.0 μM concentration. , Thesis (MSc) -- Faculty of Science, Department of Chemistry, 2021
- Full Text:
- Authors: Tshenkeng, Keamogetse Tebogo Charlotte
- Date: 2021-10-29
- Subjects: Catecholamines , Electrochemical sensors , Neurotransmitters , Vitamin C , Cobalt , Phthalocyanines , Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc)
- Language: English
- Type: thesis , text
- Identifier: http://hdl.handle.net/10962/176921 , vital:42772
- Description: This study presents the synthesis of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) through the cyclotetramerization of 4-(3-carboxyphe-noxy)phthalonitrile and its full characterization using Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis and mass spectrometry. The CoTCPhOPc was then immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA using amide coupling reaction through a reaction with NHS and DCC to obtain Au-PEA-CoTCPhOPc. This yielded pH sensitive thin films due to the terminal carboxylic acid (–COOH) functional groups. Electrochemical and surface characterization was conducted to confirm the modification of the bare Au with PEA thin film (Au-PEA) and amide coupling of CoTCPhOPc (Au-PEA-CoTCPhOPc). The Au-PEA-CoTCPhOPc electrode was shown to possess pH selective properties towards negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. Au-PEA-CoTCPhOPc electrode surface enabled the detection of catecholamine neurotransmitters (dopamine, norepinephrine and epinephrine) and the screening off of ascorbic acid by means of pH sensitive functional groups. Bare Au and Au-PEA electrodes exhibited electro-oxidation and electroreduction of catecholamine neuro-transmitters and ascorbic acid at higher potentials compared to Au-PEA-CoTCPhOPc. There was no electro-oxidation or electroreduction of ascorbic acid at Au-PEA-CoTCPhOPc. For Au-PEA-CoTCPhOPc, excellent electrocatalytic oxidation with the limit of detection (LoD) determined using 3σ was found to be 1.32 (0.95), 2.11 (1.78) and 3.08 μM for electro-oxidation and electroreduction (in brackets) of dopamine, norepinephrine and epinephrine respectively. The limit of quantification (LoQ) was determined using 10σ and found to be 4.41 (3.17), 7.02 (5.93) and 10.3 μM electro-oxidation and electroreduction (in brackets) for dopamine, norepinephrine and epinephrine respectively. The Au-PEA-CoTCPhOPc thin film was shown to screen off ascorbic acid as no electrocatalytic oxidation was observed for up to 100.0 μM concentration. , Thesis (MSc) -- Faculty of Science, Department of Chemistry, 2021
- Full Text:
- «
- ‹
- 1
- ›
- »