Large scale spatio-temporal forcing of pelagic-coastal coupling: disentangling the effects of environmental change on intertidal invertebrate recruitment
- Authors: Muñiz, Carlota Fernández
- Date: 2019
- Subjects: Dinoflagellates -- South Africa , Coastal ecology -- South Africa , Climatic changes -- South Africa , Benthic ecology -- South Africa , Agulhas Current , Ocean temperature -- Agulhas Current , Ocean temperature -- Physiological effect
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/151541 , vital:39140
- Description: Marine systems are driven by the relationships among organisms and environmental conditions. Anthropogenic-induced changes during the past decades have started to alter climatic drivers which have the potential to alter the physical, chemical and biological environment. In coastal systems, biogeography is influenced by the temporal variability in the conditions of the water mass. In addition, many marine benthic organisms develop in the water mass and rely on the conditions that link the pelagic and benthic systems for population maintenance. Such pelagic-coastal coupling indicates that changes in the trophic system during development can be transferred to the adult populations through changes in propagule supply. Thus, changes in environmental conditions can influence benthic populations directly (e.g. through larval advection) or indirectly, through their influence on the phytoplankton community (e.g. through the development of HABs). The South African coastline shows clear alongshore patterns of faunal biomass and species richness. On the south coast, strong longitudinal patterns of recruitment of intertidal organisms exist, with areas of particularly high recruitment. HABs of unprecedented spatio-temporal magnitude have recently developed along the south coast, including the areas where benthic recruitment is most intense. The present thesis used these blooms to study changes in intertidal recruitment directly or indirectly associated with their occurrence. Using a combination of remote sensing data to study the environmental conditions of the water mass in the innermost part of the Agulhas Bank, and estimates of mussel and barnacle recruitment rates to integrate the effects of conditions in the water mass during larval development, this thesis aimed to: (1) understand the conditions that triggered the development of an HAB of the dinoflagellate Lingulodinium polyedrum during summer of 2014, (2) determine the direct or indirect effects of that bloom on recruitment of intertidal organisms, and understand the factors that affect recruitment along the coast, (3) determine if the environmental factors during bloom development produced any carryover effects on recruit growth and mortality, and (4) determine the factors that drive changes in community biomass and composition along the south coast, the long-term trends in those factors, and possible changes experienced in recent years. Water column stability during spring, before the development of the red tide, followed by alternating periods of upwelling and relaxation during summer and autumn, seemed to promote the development and persistence of L. polyedrum. Recruitment of mussels and barnacles was estimated during the reproductive season of mussels in 2014, coinciding with the red tide, and during the following year. Alongshore patterns in recruitment were found, with higher mussel recruitment in the absence of the red tide and the opposite pattern in barnacles. Alongshore patterns in SST and chlorophyll matching those of recruitment were also found, with higher SSTs and lower chlorophyll during the red tide than the following year. Growth and mortality rates in barnacles did not differ between years during the first five months after settlement. This suggests that the factors which produced differences in recruitment between years did not produce carryover effects detectable at the temporal scales studied. Further analysis of 15 years of satellite-derived environmental data showed significant cooling trends potentially driven by a long-term seasonal acceleration of the Agulhas Current in autumn around two upwelling centres on the south coast, coinciding temporally with the reproductive period of mussels and barnacles, and spatially with the areas of highest recruitment. In addition, the comparison of SST and chl-a conditions during the first and the second half of the period of study showed that seasonality of both variables has changed in large areas over the shelf, with increasing importance of shorter-term variability, which would in turn decrease environmental predictability. Thus, the conditions observed during the present study, particularly during 2015, when upwelling seemed to be more intense, may presage the potential effects of identified long-term cooling trends at the upwelling centres. Although the general trend shows cooling around those areas, conditions can vary greatly among years, favouring different taxa. Changes in the Agulhas Current System are affected by changes in distant areas in the Indian Ocean basin. Such tele-connection is unlikely to be unique to this system and indicates the importance of understanding trends in major large scale climatic drivers and their regional effects in order to make predictions about coastal systems.
- Full Text:
- Authors: Muñiz, Carlota Fernández
- Date: 2019
- Subjects: Dinoflagellates -- South Africa , Coastal ecology -- South Africa , Climatic changes -- South Africa , Benthic ecology -- South Africa , Agulhas Current , Ocean temperature -- Agulhas Current , Ocean temperature -- Physiological effect
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/151541 , vital:39140
- Description: Marine systems are driven by the relationships among organisms and environmental conditions. Anthropogenic-induced changes during the past decades have started to alter climatic drivers which have the potential to alter the physical, chemical and biological environment. In coastal systems, biogeography is influenced by the temporal variability in the conditions of the water mass. In addition, many marine benthic organisms develop in the water mass and rely on the conditions that link the pelagic and benthic systems for population maintenance. Such pelagic-coastal coupling indicates that changes in the trophic system during development can be transferred to the adult populations through changes in propagule supply. Thus, changes in environmental conditions can influence benthic populations directly (e.g. through larval advection) or indirectly, through their influence on the phytoplankton community (e.g. through the development of HABs). The South African coastline shows clear alongshore patterns of faunal biomass and species richness. On the south coast, strong longitudinal patterns of recruitment of intertidal organisms exist, with areas of particularly high recruitment. HABs of unprecedented spatio-temporal magnitude have recently developed along the south coast, including the areas where benthic recruitment is most intense. The present thesis used these blooms to study changes in intertidal recruitment directly or indirectly associated with their occurrence. Using a combination of remote sensing data to study the environmental conditions of the water mass in the innermost part of the Agulhas Bank, and estimates of mussel and barnacle recruitment rates to integrate the effects of conditions in the water mass during larval development, this thesis aimed to: (1) understand the conditions that triggered the development of an HAB of the dinoflagellate Lingulodinium polyedrum during summer of 2014, (2) determine the direct or indirect effects of that bloom on recruitment of intertidal organisms, and understand the factors that affect recruitment along the coast, (3) determine if the environmental factors during bloom development produced any carryover effects on recruit growth and mortality, and (4) determine the factors that drive changes in community biomass and composition along the south coast, the long-term trends in those factors, and possible changes experienced in recent years. Water column stability during spring, before the development of the red tide, followed by alternating periods of upwelling and relaxation during summer and autumn, seemed to promote the development and persistence of L. polyedrum. Recruitment of mussels and barnacles was estimated during the reproductive season of mussels in 2014, coinciding with the red tide, and during the following year. Alongshore patterns in recruitment were found, with higher mussel recruitment in the absence of the red tide and the opposite pattern in barnacles. Alongshore patterns in SST and chlorophyll matching those of recruitment were also found, with higher SSTs and lower chlorophyll during the red tide than the following year. Growth and mortality rates in barnacles did not differ between years during the first five months after settlement. This suggests that the factors which produced differences in recruitment between years did not produce carryover effects detectable at the temporal scales studied. Further analysis of 15 years of satellite-derived environmental data showed significant cooling trends potentially driven by a long-term seasonal acceleration of the Agulhas Current in autumn around two upwelling centres on the south coast, coinciding temporally with the reproductive period of mussels and barnacles, and spatially with the areas of highest recruitment. In addition, the comparison of SST and chl-a conditions during the first and the second half of the period of study showed that seasonality of both variables has changed in large areas over the shelf, with increasing importance of shorter-term variability, which would in turn decrease environmental predictability. Thus, the conditions observed during the present study, particularly during 2015, when upwelling seemed to be more intense, may presage the potential effects of identified long-term cooling trends at the upwelling centres. Although the general trend shows cooling around those areas, conditions can vary greatly among years, favouring different taxa. Changes in the Agulhas Current System are affected by changes in distant areas in the Indian Ocean basin. Such tele-connection is unlikely to be unique to this system and indicates the importance of understanding trends in major large scale climatic drivers and their regional effects in order to make predictions about coastal systems.
- Full Text:
Using a multi-method approach to understand the movement patterns and the associated environmental correlates of an iconic West African recreational fish
- Authors: Winkler, Alexander Claus
- Date: 2019
- Subjects: Carangidae fishing , Carangidae -- Migration , Carangidae -- Namibia , Carangidae -- Angola , Fish tagging , Carangidae -- Benguela Current , Underwater acoustic telemetry , Ocean temperature -- Physiological effect , Fishes -- Effect of temperature on
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76530 , vital:30597
- Description: The leerfish (Lichia amia), is a large, primarily coastal recreational fish species with a distribution extending from Portugal down the west coast of African to southern Mozambique. Owing to its large size (30 kg), strong fighting abilities and habit of taking surface artificial lures, this species has taken on an iconic stature among shore-based recreational anglers. Its reputation has made it an important angling tourism species that makes an important contribution to the economy of developing countries. For example, the species brought US$243 per harvested kilogramme into the local southern Angola economy. Despite its high value, little is known about its movement patterns in the northern Benguela coastal region, a region which includes southern Angola and northern Namibia. While much is known about the migratory patterns of the South African stock of L. amia, recent molecular studies have shown that the northern Benguela stock of L. amia has been isolated from the South African population for at least two million years, a consequence of the development of the cold Lüderitz upwelling cell in southern Namibia. Although the global population of L. amia is considered a single species, prominent biogeographic barriers within its distribution and subtle morphological differences between specimens captured within its tropical versus warm-temperate distribution suggest otherwise. A multi-method approach incorporating passive acoustic telemetry (PAT), recreational catch-per-unit-effort (CPUE) and conventional tagging (CT) in southern Angola, as well as recreational fisher-ecological knowledge (FEK) from Namibia, was used to investigate the large-scale movement patterns of L. amia within the northern Benguela coastal region. While each method had its own associated limitations, the combination provided a holistic picture of the population's seasonal migratory patterns. Furthermore, PAT successfully identified partial migration with 25% vs 75% of monitored fish exhibiting resident (movements < 100 km) or migratory (movements > 100 km) behaviour, respectively. Further behavioural diversity was observed with ‘resident’, ‘roaming’ and ‘embayment’ contingents identified based on varying levels of affinity to certain habitats. The presence of both resident and migratory individuals within the northernmost study during June and July, combined with available biological information, suggested that area-specific spawning may take place. While PAT, CPUE and CT largely aligned in determining area specific high-area use, results from network analyses and mixed effects models conducted on the PAT data supported the spawning hypothesis, with anomalous behaviour around specific receivers during the spawning season. All fish, regardless of behavioural contingent, displayed similar movement behaviour during the spawning season and this was driven by factors generally associated with reproduction, such as lunar illumination. Interestingly, these drivers were different from those that determined the area specific use of individuals outside of the spawning season. The environmental drivers of longshore migration into the northern study site were identified as a decline in water temperature and shorter day lengths. The results of this study highlight the importance of using a multi-method approach in determining migratory movement behaviour, area specific area use, and stock structure of key fisheries species. The identification of different behavioural contingents highlights the importance of acknowledging individual variation in movement and habitat-use patterns. This is particularly relevant as future climate change and spatiotemporal variation in fishing effort may artificially skew natural selection processes to favour certain behavioural groups. This study also highlighted the importance of scientists forming relationships with resource-users, such as recreational angling lodges in areas where limited research has been conducted. This is particularly relevant within the West African context where little is known about many of the fish species that are being increasingly targeted by tourism angling ventures.
- Full Text:
- Authors: Winkler, Alexander Claus
- Date: 2019
- Subjects: Carangidae fishing , Carangidae -- Migration , Carangidae -- Namibia , Carangidae -- Angola , Fish tagging , Carangidae -- Benguela Current , Underwater acoustic telemetry , Ocean temperature -- Physiological effect , Fishes -- Effect of temperature on
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76530 , vital:30597
- Description: The leerfish (Lichia amia), is a large, primarily coastal recreational fish species with a distribution extending from Portugal down the west coast of African to southern Mozambique. Owing to its large size (30 kg), strong fighting abilities and habit of taking surface artificial lures, this species has taken on an iconic stature among shore-based recreational anglers. Its reputation has made it an important angling tourism species that makes an important contribution to the economy of developing countries. For example, the species brought US$243 per harvested kilogramme into the local southern Angola economy. Despite its high value, little is known about its movement patterns in the northern Benguela coastal region, a region which includes southern Angola and northern Namibia. While much is known about the migratory patterns of the South African stock of L. amia, recent molecular studies have shown that the northern Benguela stock of L. amia has been isolated from the South African population for at least two million years, a consequence of the development of the cold Lüderitz upwelling cell in southern Namibia. Although the global population of L. amia is considered a single species, prominent biogeographic barriers within its distribution and subtle morphological differences between specimens captured within its tropical versus warm-temperate distribution suggest otherwise. A multi-method approach incorporating passive acoustic telemetry (PAT), recreational catch-per-unit-effort (CPUE) and conventional tagging (CT) in southern Angola, as well as recreational fisher-ecological knowledge (FEK) from Namibia, was used to investigate the large-scale movement patterns of L. amia within the northern Benguela coastal region. While each method had its own associated limitations, the combination provided a holistic picture of the population's seasonal migratory patterns. Furthermore, PAT successfully identified partial migration with 25% vs 75% of monitored fish exhibiting resident (movements < 100 km) or migratory (movements > 100 km) behaviour, respectively. Further behavioural diversity was observed with ‘resident’, ‘roaming’ and ‘embayment’ contingents identified based on varying levels of affinity to certain habitats. The presence of both resident and migratory individuals within the northernmost study during June and July, combined with available biological information, suggested that area-specific spawning may take place. While PAT, CPUE and CT largely aligned in determining area specific high-area use, results from network analyses and mixed effects models conducted on the PAT data supported the spawning hypothesis, with anomalous behaviour around specific receivers during the spawning season. All fish, regardless of behavioural contingent, displayed similar movement behaviour during the spawning season and this was driven by factors generally associated with reproduction, such as lunar illumination. Interestingly, these drivers were different from those that determined the area specific use of individuals outside of the spawning season. The environmental drivers of longshore migration into the northern study site were identified as a decline in water temperature and shorter day lengths. The results of this study highlight the importance of using a multi-method approach in determining migratory movement behaviour, area specific area use, and stock structure of key fisheries species. The identification of different behavioural contingents highlights the importance of acknowledging individual variation in movement and habitat-use patterns. This is particularly relevant as future climate change and spatiotemporal variation in fishing effort may artificially skew natural selection processes to favour certain behavioural groups. This study also highlighted the importance of scientists forming relationships with resource-users, such as recreational angling lodges in areas where limited research has been conducted. This is particularly relevant within the West African context where little is known about many of the fish species that are being increasingly targeted by tourism angling ventures.
- Full Text:
- «
- ‹
- 1
- ›
- »