NFComms: A synchronous communication framework for the CPU-NFP heterogeneous system
- Authors: Pennefather, Sean
- Date: 2020
- Subjects: Network processors , Computer programming , Parallel processing (Electronic computers) , Netronome
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/144181 , vital:38318
- Description: This work explores the viability of using a Network Flow Processor (NFP), developed by Netronome, as a coprocessor for the construction of a CPU-NFP heterogeneous platform in the domain of general processing. When considering heterogeneous platforms involving architectures like the NFP, the communication framework provided is typically represented as virtual network interfaces and is thus not suitable for generic communication. To enable a CPU-NFP heterogeneous platform for use in the domain of general computing, a suitable generic communication framework is required. A feasibility study for a suitable communication medium between the two candidate architectures showed that a generic framework that conforms to the mechanisms dictated by Communicating Sequential Processes is achievable. The resulting NFComms framework, which facilitates inter- and intra-architecture communication through the use of synchronous message passing, supports up to 16 unidirectional channels and includes queuing mechanisms for transparently supporting concurrent streams exceeding the channel count. The framework has a minimum latency of between 15.5 μs and 18 μs per synchronous transaction and can sustain a peak throughput of up to 30 Gbit/s. The framework also supports a runtime for interacting with the Go programming language, allowing user-space processes to subscribe channels to the framework for interacting with processes executing on the NFP. The viability of utilising a heterogeneous CPU-NFP system for use in the domain of general and network computing was explored by introducing a set of problems or applications spanning general computing, and network processing. These were implemented on the heterogeneous architecture and benchmarked against equivalent CPU-only and CPU/GPU solutions. The results recorded were used to form an opinion on the viability of using an NFP for general processing. It is the author’s opinion that, beyond very specific use cases, it appears that the NFP-400 is not currently a viable solution as a coprocessor in the field of general computing. This does not mean that the proposed framework or the concept of a heterogeneous CPU-NFP system should be discarded as such a system does have acceptable use in the fields of network and stream processing. Additionally, when comparing the recorded limitations to those seen during the early stages of general purpose GPU development, it is clear that general processing on the NFP is currently in a similar state.
- Full Text:
- Date Issued: 2020
The role of parallel computing in bioinformatics
- Authors: Akhurst, Timothy John
- Date: 2005
- Subjects: Bioinformatics , Parallel programming (Computer science) , LINDA (Computer system) , Java (Computer program language) , Parallel processing (Electronic computers) , Genomics -- Data processing
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3986 , http://hdl.handle.net/10962/d1004045 , Bioinformatics , Parallel programming (Computer science) , LINDA (Computer system) , Java (Computer program language) , Parallel processing (Electronic computers) , Genomics -- Data processing
- Description: The need to intelligibly capture, manage and analyse the ever-increasing amount of publicly available genomic data is one of the challenges facing bioinformaticians today. Such analyses are in fact impractical using uniprocessor machines, which has led to an increasing reliance on clusters of commodity-priced computers. An existing network of cheap, commodity PCs was utilised as a single computational resource for parallel computing. The performance of the cluster was investigated using a whole genome-scanning program written in the Java programming language. The TSpaces framework, based on the Linda parallel programming model, was used to parallelise the application. Maximum speedup was achieved at between 30 and 50 processors, depending on the size of the genome being scanned. Together with this, the associated significant reductions in wall-clock time suggest that both parallel computing and Java have a significant role to play in the field of bioinformatics.
- Full Text:
- Date Issued: 2005