Sexual attraction and mating compatibility between Thaumatotibia leucotreta populations and implications for semiochemical dependent technologies
- Authors: Upfold, Jennifer Kate
- Date: 2020
- Subjects: Cryptophlebia leucotreta -- South Africa , Cryptophlebia leucotreta -- Reproduction , Citrus -- Disease and pests -- Control -- South Africa , Insect sterilization -- South Africa , Pheromones , Pheromone traps
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/148526 , vital:38747
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick), is the most important pest for the cultivation of citrus in South Africa. False codling moth is indigenous to southern Africa and is a regulated pest of many international markets for phytosanitary concerns. Considerable research efforts have been invested in the past decades to develop semiochemcial technologies, such as monitoring with sex pheromones, attract-and-kill, mating disruption and the sterile insect technique. One of the potential obstacles identified with semiochemical control is the differences in the ratio of the compounds comprising the sex pheromone at different geographical locations, resulting in what is known as regional attraction. This has been identified in FCM populations from three different countries, however, regional attraction within South African FCM populations was unknown. Therefore, the study assessed the genetic integrity of five laboratory-reared FCM populations originating from geographically isolated populations in South Africa using the AFLP technique in order to assess regional attractiveness within the country. The results found isolated populations from Addo, Citrusdal, Marble Hall, Nelspruit and a fifth group found to be closely related to Addo and Citrusdal called the ‘Old’ colony. These five genetically isolated populations as well as a population from Xsit (Pty) Ltd, used for the sterile insect technique (SIT), were used in regional attractiveness trials. Males were significantly (P = <0.05) more attracted to females originating from the same population. No significant attraction could be determined from the sterile males, as the recapture rates in the trap were too low. Furthermore, regional attractiveness was assessed through choice/ no-choice mating compatibility trials. Significant sexual isolation (ISI) occurred between mating combinations Addo × Nelspruit (ISI = 0,13; t2 = 6.23; p = 0.02), Addo × Marble Hall (ISI = 0,11; t2 = 4.72; p = 0.04), Citrusdal × Nelspruit (ISI = 0,11; t2 = 4.95; p = 0.04), and Citrusdal × Marble Hall (ISI = 0,12; t2 = 4.31; p = 0.04). In these combinations, Addo and Citrusdal males were found to have outcompeted Nelspruit and Marble Hall males for more mating events. Significant sexual isolation was also recorded for Sterile × Marble Hall (ISI = 0.12; t2 = 4.98; p =0.01) and Sterile × Citrusdal (ISI = 0.13; t2 = 3.96; p = 0.01) populations. The male relative performance index was significant in both combinations, indicating that non-sterile laboratory males outcompeted the sterile males in these two combinations. When given no choice, evaluated as spermatophore transfer/ female/ 48h, all males (including sterile) were successful in transferring spermatophores to all FCM populations, with no significant differences. These results indicate that there may be incipient pre-isolation mechanisms affected by local natural selection, resulting in localised sexual attraction via differences in the sex pheromone ratios. These findings provide important information for semiochemical technologies and the implication of these results with regard to monitoring with sex pheromones, attract-and-kill, mating disruption and sterile insect technique are discussed.
- Full Text:
- Date Issued: 2020
- Authors: Upfold, Jennifer Kate
- Date: 2020
- Subjects: Cryptophlebia leucotreta -- South Africa , Cryptophlebia leucotreta -- Reproduction , Citrus -- Disease and pests -- Control -- South Africa , Insect sterilization -- South Africa , Pheromones , Pheromone traps
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/148526 , vital:38747
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick), is the most important pest for the cultivation of citrus in South Africa. False codling moth is indigenous to southern Africa and is a regulated pest of many international markets for phytosanitary concerns. Considerable research efforts have been invested in the past decades to develop semiochemcial technologies, such as monitoring with sex pheromones, attract-and-kill, mating disruption and the sterile insect technique. One of the potential obstacles identified with semiochemical control is the differences in the ratio of the compounds comprising the sex pheromone at different geographical locations, resulting in what is known as regional attraction. This has been identified in FCM populations from three different countries, however, regional attraction within South African FCM populations was unknown. Therefore, the study assessed the genetic integrity of five laboratory-reared FCM populations originating from geographically isolated populations in South Africa using the AFLP technique in order to assess regional attractiveness within the country. The results found isolated populations from Addo, Citrusdal, Marble Hall, Nelspruit and a fifth group found to be closely related to Addo and Citrusdal called the ‘Old’ colony. These five genetically isolated populations as well as a population from Xsit (Pty) Ltd, used for the sterile insect technique (SIT), were used in regional attractiveness trials. Males were significantly (P = <0.05) more attracted to females originating from the same population. No significant attraction could be determined from the sterile males, as the recapture rates in the trap were too low. Furthermore, regional attractiveness was assessed through choice/ no-choice mating compatibility trials. Significant sexual isolation (ISI) occurred between mating combinations Addo × Nelspruit (ISI = 0,13; t2 = 6.23; p = 0.02), Addo × Marble Hall (ISI = 0,11; t2 = 4.72; p = 0.04), Citrusdal × Nelspruit (ISI = 0,11; t2 = 4.95; p = 0.04), and Citrusdal × Marble Hall (ISI = 0,12; t2 = 4.31; p = 0.04). In these combinations, Addo and Citrusdal males were found to have outcompeted Nelspruit and Marble Hall males for more mating events. Significant sexual isolation was also recorded for Sterile × Marble Hall (ISI = 0.12; t2 = 4.98; p =0.01) and Sterile × Citrusdal (ISI = 0.13; t2 = 3.96; p = 0.01) populations. The male relative performance index was significant in both combinations, indicating that non-sterile laboratory males outcompeted the sterile males in these two combinations. When given no choice, evaluated as spermatophore transfer/ female/ 48h, all males (including sterile) were successful in transferring spermatophores to all FCM populations, with no significant differences. These results indicate that there may be incipient pre-isolation mechanisms affected by local natural selection, resulting in localised sexual attraction via differences in the sex pheromone ratios. These findings provide important information for semiochemical technologies and the implication of these results with regard to monitoring with sex pheromones, attract-and-kill, mating disruption and sterile insect technique are discussed.
- Full Text:
- Date Issued: 2020
Assessment of pheromone specificity in Thaumatotibia leucotreta (Meyrick) populations with focus on pest monitoring and the regional rollout of the sterile insect technique in citrus
- Authors: Joubert, Francois D
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Pheromone traps , Citrus -- Diseases and pests -- South Africa , Cryptophlebia leucotreta -- Contol , Cryptophlebia leucotreta -- Biological control
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60665 , vital:27812
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is considered the most important indigenous pest of citrus in southern Africa. It is recognized by several markets as a phytosanitary organism and the efficient control of this pest is now more important than ever. The pheromone communication between the male and female moths has been exploited in order to control FCM through the sterile insect technique (SIT). The sterilized males used for all SIT programmes across South Africa come from a colony that originates from wild material collected from the Citrusdal area of the Western Cape Province. The aim of this study was to determine if any differences in attractiveness of females to males exist between different geographical populations of FCM and if so what impact this would have on the male’s ability to locate females from other populations via the volatile sex pheromone released by the female. Laboratory trials with Y-tube olfactometers and flight tunnels tested the attraction of male moths to virgin females, but did not yield any consistent results. Field experiments were conducted with sterile male Citrusdal moths released and recaptured in yellow delta traps in two separate trials. For one trial, the traps were baited with live virgin females from five different geographical populations including Addo, Nelspruit, Marble Hall, Citrusdal and the Old colony, which is a mixture of several populations. For the other trial traps were baited with various synthetic pheromone blends including three regional blends which included South Africa, Ivory Coast and Malawi and three commercial blends including Pherolure, Isomate and Checkmate. For the virgin female trial the Citrusdal males showed a significant preference for females from their own population. There was also a significant difference in the recaptures from the different synthetic pheromones. The South African blend was the most attractive of all the regional and commercial blends. A cross-mating trial was also conducted under laboratory conditions in petri dishes with five different FCM populations including Citrusdal, Addo, Marble Hall, Nelspruit and Old (mixed origin). Females produced more eggs when mated with males from the same population for the Addo, Marble Hall, Nelspruit and Old (mixed origin) populations. The only case in which this was statistically significant was for the Marble Hall population. All the crosses produced viable eggs and the origin of the male or female did not influence egg hatch. The results from this study may lead to improvements in both the control and monitoring of FCM populations. The control methods include mating disruption, attract-and-kill and SIT. Tailoring these methods for a specific growing area with a pheromone blend originating from the area or releasing sterile moths from a colony that originates from the area may optimize the available monitoring and control options.
- Full Text:
- Date Issued: 2018
- Authors: Joubert, Francois D
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Pheromone traps , Citrus -- Diseases and pests -- South Africa , Cryptophlebia leucotreta -- Contol , Cryptophlebia leucotreta -- Biological control
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60665 , vital:27812
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is considered the most important indigenous pest of citrus in southern Africa. It is recognized by several markets as a phytosanitary organism and the efficient control of this pest is now more important than ever. The pheromone communication between the male and female moths has been exploited in order to control FCM through the sterile insect technique (SIT). The sterilized males used for all SIT programmes across South Africa come from a colony that originates from wild material collected from the Citrusdal area of the Western Cape Province. The aim of this study was to determine if any differences in attractiveness of females to males exist between different geographical populations of FCM and if so what impact this would have on the male’s ability to locate females from other populations via the volatile sex pheromone released by the female. Laboratory trials with Y-tube olfactometers and flight tunnels tested the attraction of male moths to virgin females, but did not yield any consistent results. Field experiments were conducted with sterile male Citrusdal moths released and recaptured in yellow delta traps in two separate trials. For one trial, the traps were baited with live virgin females from five different geographical populations including Addo, Nelspruit, Marble Hall, Citrusdal and the Old colony, which is a mixture of several populations. For the other trial traps were baited with various synthetic pheromone blends including three regional blends which included South Africa, Ivory Coast and Malawi and three commercial blends including Pherolure, Isomate and Checkmate. For the virgin female trial the Citrusdal males showed a significant preference for females from their own population. There was also a significant difference in the recaptures from the different synthetic pheromones. The South African blend was the most attractive of all the regional and commercial blends. A cross-mating trial was also conducted under laboratory conditions in petri dishes with five different FCM populations including Citrusdal, Addo, Marble Hall, Nelspruit and Old (mixed origin). Females produced more eggs when mated with males from the same population for the Addo, Marble Hall, Nelspruit and Old (mixed origin) populations. The only case in which this was statistically significant was for the Marble Hall population. All the crosses produced viable eggs and the origin of the male or female did not influence egg hatch. The results from this study may lead to improvements in both the control and monitoring of FCM populations. The control methods include mating disruption, attract-and-kill and SIT. Tailoring these methods for a specific growing area with a pheromone blend originating from the area or releasing sterile moths from a colony that originates from the area may optimize the available monitoring and control options.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »