The construction of phthalocyanine- carbon nanoparticle conjugates for applications in photodynamic therapy and non-linear optics
- Matshitse, Refilwe Manyama Stephina
- Authors: Matshitse, Refilwe Manyama Stephina
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanodiamonds , Photochemotherapy , Nonlinear optics , Quantum dots
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/188397 , vital:44750 , 10.21504/10962/188397
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position and sometimes positively charged are reported. The Pcs had either H2, zinc or silicon as central metals and have pyridyloxy, benzothiozole phenoxy, and respective cationic analogues as ring substituents. The Pcs were linked to carbon based nanoparticles such as graphene quantum dots, carbon dots, and detonation nanodiamonds (DNDs) via an ester, amide bond and/or π - π stacking. The physicochemical characteristics of the Pcs were assessed when alone and when in a conjugated system. Both symmetrically and asymmetrically substituted benzothiozole Pcs when quaternised displayed higher triplet and singlet oxygen quantum yields than their unquaternised counterparts. Linkage to carbon nanoparticles (especially to detonation nanodiamonds) had an increasing effect on triplet and singlet oxygen quantum yield. However, a general decrease in singlet oxygen quantum yield on linkage to doped detonation nanodiamonds was associated with the screening effect of DNDs. Heteroatom doped DNDs-Pc nanohybrids have less singlet oxygen than Pcs alone due to molecular structural stability associated with strain that is relatively reduced upon linking Pcs. The In vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. When Pc complexes are alone, there is less phototoxicity with >22% cell viability at concentrations ≤ 50 μg/mL relative to conjugates with <22% cell viability at concentrations ≤ 50 μg/mL. There was no direct relationship between PDT and singlet oxygen quantum yields. Nonlinear optical characteristics of complexes was improved upon conjugation of DNDs. Absorbance, input energy, percentage loading, central metal, substituent of Pc and nature of interaction (covalent, noncovalent) are amongst some of the factors that influence nonlinear absorption properties of materials used in this study. All materials followed reverse saturable absorption through two photon absorption mechanism at the excitation wavelength of 532 nm. Aggregates reduce excited state lifetime and Beff under high concentrations/absorbance. A direct relationship between absorbance and Beff of DNDs nanoconjugated systems at low concentrations result in increased optical limiting characteristics of materials. The findings from this work show the importance of linking (nonlinear optics and photodynamic therapy) and doping (photodynamic therapy) photosensitisers such as phthalocyanines and sometimes boron dipyrromethenes onto carbon based nanoparticles for the enhanced characteristics in variable applications. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Matshitse, Refilwe Manyama Stephina
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanodiamonds , Photochemotherapy , Nonlinear optics , Quantum dots
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/188397 , vital:44750 , 10.21504/10962/188397
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position and sometimes positively charged are reported. The Pcs had either H2, zinc or silicon as central metals and have pyridyloxy, benzothiozole phenoxy, and respective cationic analogues as ring substituents. The Pcs were linked to carbon based nanoparticles such as graphene quantum dots, carbon dots, and detonation nanodiamonds (DNDs) via an ester, amide bond and/or π - π stacking. The physicochemical characteristics of the Pcs were assessed when alone and when in a conjugated system. Both symmetrically and asymmetrically substituted benzothiozole Pcs when quaternised displayed higher triplet and singlet oxygen quantum yields than their unquaternised counterparts. Linkage to carbon nanoparticles (especially to detonation nanodiamonds) had an increasing effect on triplet and singlet oxygen quantum yield. However, a general decrease in singlet oxygen quantum yield on linkage to doped detonation nanodiamonds was associated with the screening effect of DNDs. Heteroatom doped DNDs-Pc nanohybrids have less singlet oxygen than Pcs alone due to molecular structural stability associated with strain that is relatively reduced upon linking Pcs. The In vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. When Pc complexes are alone, there is less phototoxicity with >22% cell viability at concentrations ≤ 50 μg/mL relative to conjugates with <22% cell viability at concentrations ≤ 50 μg/mL. There was no direct relationship between PDT and singlet oxygen quantum yields. Nonlinear optical characteristics of complexes was improved upon conjugation of DNDs. Absorbance, input energy, percentage loading, central metal, substituent of Pc and nature of interaction (covalent, noncovalent) are amongst some of the factors that influence nonlinear absorption properties of materials used in this study. All materials followed reverse saturable absorption through two photon absorption mechanism at the excitation wavelength of 532 nm. Aggregates reduce excited state lifetime and Beff under high concentrations/absorbance. A direct relationship between absorbance and Beff of DNDs nanoconjugated systems at low concentrations result in increased optical limiting characteristics of materials. The findings from this work show the importance of linking (nonlinear optics and photodynamic therapy) and doping (photodynamic therapy) photosensitisers such as phthalocyanines and sometimes boron dipyrromethenes onto carbon based nanoparticles for the enhanced characteristics in variable applications. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
The synthesis and characterisation of Sn(IV) porphyrin derivatives and their potential application in anti-cancer and antimicrobial photodynamic therapy
- Authors: Dingiswayo, Somila
- Date: 2021-10
- Subjects: Porphyrins , Photochemotherapy , Cancer Photochemotherapy , Active oxygen Physiological effect , Aromaticity (Chemistry) , Tetrapyrroles , Magnetic circular dichroism , Corroles , Chlorins , Photodynamic antimicrobial chemotherapy (PACT)
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188843 , vital:44791
- Description: In photodynamic therapy (PDT), the activation of light-sensitive drugs in tumour cells produces reactive singlet oxygen species, which cause tumour destruction through a cascade of biochemical reactions. Over the years, the wavelength of activation has been shown to be a critical factor in the penetration of light. Hence the properties of photosensitiser dyes in this context shape their ability to treat deep-seated tumours. In this study, the synthesis, structural characterisation and photophysicochemical properties of a series of Sn(IV) porphyrins with meso-methylthiophenyl rings that have been prepared to study their PDT and photodynamic antimicrobial chemotherapy (PACT) activity properties are reported. The series of Sn(IV) complexes is comprised of a porphyrin (1-Sn), a corrole (2-Sn), a chlorin (3-Sn) and an N-confused porphyrin (4-Sn). Herein, the low symmetry Sn(IV) porphyrin derivatives are shown to have excellent singlet oxygen generation capabilities, and lifetimes of the triplet excited states were in the microsecond range. For example, 4-Sn had a singlet oxygen quantum yield (ФΔ) and an excited triplet state lifetime (τT) of 0.88 and 27 μs, respectively. The complexes were studied using UV-visible and magnetic circular dichroism (MCD) spectroscopies. Interestingly, the positive-to-negative sign sequences of the Faraday B0 terms of 2-Sn and 3-Sn reveal that the structural modifications involved break the degeneracy of the MOs derived from the 1eg* LUMO of the porphyrin 1-Sn. In contrast, a conventional negative-to-positive sign sequence is observed for 4-Sn, since the confusion of a pyrrole moiety also results in a large separation of the 1a1u and 1a2u MOs of the porphyrin 1-Sn that are derived from the HOMO of a C16H162−parent hydrocarbon perimeter. The trends in the electronic structures of the Sn(IV) complexes were further investigated through a series of time-dependent density functional theory calculations, so that the suitability of the different types of complex for use in singlet oxygen applications could be further explored. During in vitro photodynamic antimicrobial chemotherapy (PACT) studies, chlorin derivative 3-Sn had the highest activity towards S. aureus and E. coli with log10 reductions of 10.5 and 8.74, respectively. The unusually high activity of 3-Sn against E.coli suggests that the interaction of neutral photosensitisers with gram-negativebacteria is more complex than previously understood. Anti-cancer PDT studies demonstrated that the photosensitisers had negligible dark cytotoxicity. Upon photoirradiation, the Sn(IV) complexes consistently exhibited IC50 values lower than 15 μM against MCF-7 adenocarcinoma cells. An IC50 value of 1.4 μM for 4-Sn after activation at the deep-red region of the spectrum demonstrates that complexes of this type merit further in-depth investigation. The results provide evidence that the low-symmetry Sn(IV) chlorins and N-confused porphyrins merit further in-depth study for use in singlet oxygen applications. , Thesis (MSc) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10
- Authors: Dingiswayo, Somila
- Date: 2021-10
- Subjects: Porphyrins , Photochemotherapy , Cancer Photochemotherapy , Active oxygen Physiological effect , Aromaticity (Chemistry) , Tetrapyrroles , Magnetic circular dichroism , Corroles , Chlorins , Photodynamic antimicrobial chemotherapy (PACT)
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188843 , vital:44791
- Description: In photodynamic therapy (PDT), the activation of light-sensitive drugs in tumour cells produces reactive singlet oxygen species, which cause tumour destruction through a cascade of biochemical reactions. Over the years, the wavelength of activation has been shown to be a critical factor in the penetration of light. Hence the properties of photosensitiser dyes in this context shape their ability to treat deep-seated tumours. In this study, the synthesis, structural characterisation and photophysicochemical properties of a series of Sn(IV) porphyrins with meso-methylthiophenyl rings that have been prepared to study their PDT and photodynamic antimicrobial chemotherapy (PACT) activity properties are reported. The series of Sn(IV) complexes is comprised of a porphyrin (1-Sn), a corrole (2-Sn), a chlorin (3-Sn) and an N-confused porphyrin (4-Sn). Herein, the low symmetry Sn(IV) porphyrin derivatives are shown to have excellent singlet oxygen generation capabilities, and lifetimes of the triplet excited states were in the microsecond range. For example, 4-Sn had a singlet oxygen quantum yield (ФΔ) and an excited triplet state lifetime (τT) of 0.88 and 27 μs, respectively. The complexes were studied using UV-visible and magnetic circular dichroism (MCD) spectroscopies. Interestingly, the positive-to-negative sign sequences of the Faraday B0 terms of 2-Sn and 3-Sn reveal that the structural modifications involved break the degeneracy of the MOs derived from the 1eg* LUMO of the porphyrin 1-Sn. In contrast, a conventional negative-to-positive sign sequence is observed for 4-Sn, since the confusion of a pyrrole moiety also results in a large separation of the 1a1u and 1a2u MOs of the porphyrin 1-Sn that are derived from the HOMO of a C16H162−parent hydrocarbon perimeter. The trends in the electronic structures of the Sn(IV) complexes were further investigated through a series of time-dependent density functional theory calculations, so that the suitability of the different types of complex for use in singlet oxygen applications could be further explored. During in vitro photodynamic antimicrobial chemotherapy (PACT) studies, chlorin derivative 3-Sn had the highest activity towards S. aureus and E. coli with log10 reductions of 10.5 and 8.74, respectively. The unusually high activity of 3-Sn against E.coli suggests that the interaction of neutral photosensitisers with gram-negativebacteria is more complex than previously understood. Anti-cancer PDT studies demonstrated that the photosensitisers had negligible dark cytotoxicity. Upon photoirradiation, the Sn(IV) complexes consistently exhibited IC50 values lower than 15 μM against MCF-7 adenocarcinoma cells. An IC50 value of 1.4 μM for 4-Sn after activation at the deep-red region of the spectrum demonstrates that complexes of this type merit further in-depth investigation. The results provide evidence that the low-symmetry Sn(IV) chlorins and N-confused porphyrins merit further in-depth study for use in singlet oxygen applications. , Thesis (MSc) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10
Azadipyrromethenes for applications in photodynamic antimicrobial chemotherapy, photodynamic therapy and optical limiting
- Authors: Dubazana, Nadine
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Staphylococcus aureus , Nonlinear optics , Azadipyrromethenes , BODIPY
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166150 , vital:41333
- Description: Azadipyrromethenes, azaBODIPYs and zinc azadipyrromethene complexes were prepared and characterised to examine the effect on their photophysical properties of incorporating phenyl groups at the 1,3,5,7-positions with electron-donating and withdrawing groups at the para-positions. To enhance their ability to generate singlet oxygen, appropriate structural modifications were made through the addition of a Zn(II) ion or halogenation at the 2,6 positions. In vitro photodynamic therapy (PDT) studies targeting MCF-7 human breast cancer cells were carried out. To evaluate and understand the effectiveness of the dyes as photosensitisers, cellular uptake, phototoxicity and the half-maximal inhibitory concentration (IC50) values were analysed. Photodynamic antimicrobial chemotherapy (PACT) studies were also carried out to study the effectiveness of the dyes against Staphylococcus aureus (S. aureus). Dyes with donor-π-acceptor (D-π-A) properties were synthesised and tested against the second harmonic of the Nd:YAG laser in optical limiting (OL) studies. The second-order hyperpolarisability, third-order susceptibility and nonlinear absorption coefficient values were determined. The results suggest that 1,3,5,7-azaBODIPY dyes may be less suitable for use in this context than analogous D-π-A 3,5-distyrylBODIPY dyes. Molecular modelling was carried out to identify the structure-property relationships of the synthesised dyes by analysing trends in the energies of the frontier molecular orbitals (MOs) and spectroscopic properties.
- Full Text:
- Date Issued: 2020
- Authors: Dubazana, Nadine
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Staphylococcus aureus , Nonlinear optics , Azadipyrromethenes , BODIPY
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166150 , vital:41333
- Description: Azadipyrromethenes, azaBODIPYs and zinc azadipyrromethene complexes were prepared and characterised to examine the effect on their photophysical properties of incorporating phenyl groups at the 1,3,5,7-positions with electron-donating and withdrawing groups at the para-positions. To enhance their ability to generate singlet oxygen, appropriate structural modifications were made through the addition of a Zn(II) ion or halogenation at the 2,6 positions. In vitro photodynamic therapy (PDT) studies targeting MCF-7 human breast cancer cells were carried out. To evaluate and understand the effectiveness of the dyes as photosensitisers, cellular uptake, phototoxicity and the half-maximal inhibitory concentration (IC50) values were analysed. Photodynamic antimicrobial chemotherapy (PACT) studies were also carried out to study the effectiveness of the dyes against Staphylococcus aureus (S. aureus). Dyes with donor-π-acceptor (D-π-A) properties were synthesised and tested against the second harmonic of the Nd:YAG laser in optical limiting (OL) studies. The second-order hyperpolarisability, third-order susceptibility and nonlinear absorption coefficient values were determined. The results suggest that 1,3,5,7-azaBODIPY dyes may be less suitable for use in this context than analogous D-π-A 3,5-distyrylBODIPY dyes. Molecular modelling was carried out to identify the structure-property relationships of the synthesised dyes by analysing trends in the energies of the frontier molecular orbitals (MOs) and spectroscopic properties.
- Full Text:
- Date Issued: 2020
In vitro susceptibility of Staphylococcus aureus to porphyrin-silver mediated photodynamic antimicrobial chemotherapy
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Date Issued: 2020
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Date Issued: 2020
Photo-physicochemical characterization and in vitro Photodynamic Therapy Activity of Phthalocyanine-Graphene Quantum Dots Conjugates
- Authors: Nene, Lindokuhle Cindy
- Date: 2020
- Subjects: Photochemotherapy , Cancer -- Chemotherapy , Quantum dots , Graphene , Nanomedicine
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140463 , vital:37891
- Description: This thesis reports on the preparation of several differently substituted Zn(II) phthalocyanine (Pc) complexes and their respective graphene quantum dots (GQDs) conjugates. In addition, Pc complexes substituted with biologically active molecules used in cancer therapeutics, namely: benzothiazole and morpholine, were also prepared and conjugated to GQDs. The photo-physicochemical properties were determined for both the complexes and their respective conjugates including the fluorescence/ triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pc complexes decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields. This is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of reduced actual number of Pc units provided in the conjugate for therapy. An increase in the efficacy upon quaternization was observed, and a relatively better performance was also observed for the cationic complex in combination with the biotin- functionalized GQDs, 7-GQDs-Biotin. Moreover, the cellular uptake of 7-GQDs-Biotin over 24 h was relatively high compared to complexes alone and other Pcs-GQDs conjugates.
- Full Text:
- Date Issued: 2020
- Authors: Nene, Lindokuhle Cindy
- Date: 2020
- Subjects: Photochemotherapy , Cancer -- Chemotherapy , Quantum dots , Graphene , Nanomedicine
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140463 , vital:37891
- Description: This thesis reports on the preparation of several differently substituted Zn(II) phthalocyanine (Pc) complexes and their respective graphene quantum dots (GQDs) conjugates. In addition, Pc complexes substituted with biologically active molecules used in cancer therapeutics, namely: benzothiazole and morpholine, were also prepared and conjugated to GQDs. The photo-physicochemical properties were determined for both the complexes and their respective conjugates including the fluorescence/ triplet quantum yields and lifetimes as well as the singlet oxygen generating abilities. Upon conjugation to GQDs, the fluorescence of the Pc complexes decreased (insignificant decrease in some cases), with an increase in the triplet quantum yields. However, the singlet quantum yields of the Pcs in the conjugates did not show an increase with the increase in the triplet quantum yields. This is suspected to be due to the screening effect. The cytotoxicity of the complexes in vitro decreased upon conjugation, as a result of reduced actual number of Pc units provided in the conjugate for therapy. An increase in the efficacy upon quaternization was observed, and a relatively better performance was also observed for the cationic complex in combination with the biotin- functionalized GQDs, 7-GQDs-Biotin. Moreover, the cellular uptake of 7-GQDs-Biotin over 24 h was relatively high compared to complexes alone and other Pcs-GQDs conjugates.
- Full Text:
- Date Issued: 2020
Synthesis, photophysicochemical properties and photodynamic therapy activities of indium and zinc phthalocyanines when incorporated into Pluronic polymer micelles
- Authors: Motloung, Banele Mike
- Date: 2020
- Subjects: Indium , Zinc , Phthalocyanines , Polymers , Photochemotherapy , Micelles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167529 , vital:41489
- Description: This thesis reports on the syntheses, photophysicochemical properties and photodynamic therapy activities of symmetrical metallophthalocyanines (MPcs) when alone or when incorporated into Pluronic polymer micelles. The Pcs contain either zinc or indium as central metals and have phenyldiazenylphenoxy, pyridine-2-yloxy and benzo[d]thiazol-2-ylthio as ring substituents. Spectroscopic and microscopic techniques were used to confirm the formation MPcs with micelles. The photophysics and photochemistry of the Pcs were assessed when alone and with micelles. All the studied Pcs showed good photophysicochemical behavior with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yields. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy atom effect obtained from the former. The in vitro dark cytotoxicity and photodynamic therapy of the Pc complexes and conjugates against MCF7 cells was tested. All studied Pc complexes alone and with micelles showed minimum dark toxicity making them applicable for PDT. All complexes displayed good phototoxicity < 50% cell viability (except for complex 2 > 50% cell viability) at concentrations ≤100 μg/mL, however the conjugates showed < 45% cell viability at concentrations ≤ 100 μg/mL, probably due to the small micellar size and EPR effect. The findings from this work show the importance of incorporating photosensitizers such as phthalocyanines into Pluronic polymers micelles and making them water soluble and ultimately improving their photodynamic effect.
- Full Text:
- Date Issued: 2020
- Authors: Motloung, Banele Mike
- Date: 2020
- Subjects: Indium , Zinc , Phthalocyanines , Polymers , Photochemotherapy , Micelles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167529 , vital:41489
- Description: This thesis reports on the syntheses, photophysicochemical properties and photodynamic therapy activities of symmetrical metallophthalocyanines (MPcs) when alone or when incorporated into Pluronic polymer micelles. The Pcs contain either zinc or indium as central metals and have phenyldiazenylphenoxy, pyridine-2-yloxy and benzo[d]thiazol-2-ylthio as ring substituents. Spectroscopic and microscopic techniques were used to confirm the formation MPcs with micelles. The photophysics and photochemistry of the Pcs were assessed when alone and with micelles. All the studied Pcs showed good photophysicochemical behavior with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yields. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy atom effect obtained from the former. The in vitro dark cytotoxicity and photodynamic therapy of the Pc complexes and conjugates against MCF7 cells was tested. All studied Pc complexes alone and with micelles showed minimum dark toxicity making them applicable for PDT. All complexes displayed good phototoxicity < 50% cell viability (except for complex 2 > 50% cell viability) at concentrations ≤100 μg/mL, however the conjugates showed < 45% cell viability at concentrations ≤ 100 μg/mL, probably due to the small micellar size and EPR effect. The findings from this work show the importance of incorporating photosensitizers such as phthalocyanines into Pluronic polymers micelles and making them water soluble and ultimately improving their photodynamic effect.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »