Development of graphene materials and phthalocyanines for application in dye-sensitized solar cells
- Authors: Chindeka, Francis
- Date: 2020
- Subjects: Dye-sensitized solar cells , Graphene , Phthalocyanines , Molecular orbitals , Impedance spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166092 , vital:41328
- Description: Two sets of dye-sensitized solar cells (DSSCs) were fabricated. In the first set, dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparative purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value obtained is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency. In the second set, DSSCs were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc (4) photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69 % and 4.36 % respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) showed significant improvement on the performance of the DSSC compared to previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
- Authors: Chindeka, Francis
- Date: 2020
- Subjects: Dye-sensitized solar cells , Graphene , Phthalocyanines , Molecular orbitals , Impedance spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166092 , vital:41328
- Description: Two sets of dye-sensitized solar cells (DSSCs) were fabricated. In the first set, dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparative purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value obtained is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency. In the second set, DSSCs were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc (4) photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69 % and 4.36 % respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) showed significant improvement on the performance of the DSSC compared to previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
Symmetry and asymmetry in electrocatalysis: enhancing the electrocatalytic activity of phthalocyanines through synergy with doped graphene quantum dots
- Nkhahle, Reitumetse Precious
- Authors: Nkhahle, Reitumetse Precious
- Date: 2020
- Subjects: Phthalocyanines , Quantum dots , Graphene
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117585 , vital:34529
- Description: An exploration on the enhancement of the electrocatalytic activity of phthalocyanines (Pcs) through coupling with a series of graphene quantum dots (GQDs) is undertaken. The preliminary studies using symmetrical Pcs, a cobalt and an iron chloride tetra substituted diethylaminophenoxy Pc (complexes 1 and 2), for the electro-oxidation of nitrite revealed through the various sequential modifications that doped GQDs fare better than their pristine counterparts with respect to improving the electrocatalytic behaviour of Pcs, in particular, the nitrogen-doped GQDs (NGQDs). Following up on this, a series of asymmetric Pc complexes; 2,9,16-tris-(4-tert-butylphenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (3), 2,9,16-tris-(4-tert-butylphenoxy) mono aminophenoxy phthalocyanato cobalt (II) (4), 2,9,16-tris-(3-diethylamino)phenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (5) and 2,9,16-tris-(3-diethylamino)phenoxy) mono aminophenoxy phthalocyanato cobalt (II) (6) was prepared in which push-pull systems were compared to other asymmetric complexes that lack this effect towards the electrocatalytic sensing of hydrazine. All asymmetric complexes (3-6) were π-stacked to the NGQDs while those with an NH2 group (4 and 6), were also covalently linked to the NGQDs. These complexes and their corresponding conjugates were characterized accordingly and applied as electrocatalysts in the oxidation of hydrazine. The electrochemical studies revealed that π π stacking yields better responses (higher sensitivities and lower limits of detection) than covalent linking because there are less forces acting on the graphene network. Covalent linking introduces both tensile and compressive forces which in turn results in an increase in the ID/IG ratio and that is unfavourable for electrocatalysis. In comparing the electrodes composed of the π-stacked conjugates to those altered through sequential modifications, despite the conditions not being the same, it can be inferred that the magnitude of the electrostatic forces between the Pcs and the GQDs also plays a significant role in electrocatalysis. The π-stacked conjugates, owing to the manner in which they were prepared, have stronger electrostatic forces acting between the Pc and GQDs hence they were able to elicit a better electrochemical response than the sequentially modified electrodes. In addition to that, it appears that asymmetric Pcs are better electrocatalysts in comparison to the symmetric Pcs.
- Full Text:
- Authors: Nkhahle, Reitumetse Precious
- Date: 2020
- Subjects: Phthalocyanines , Quantum dots , Graphene
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117585 , vital:34529
- Description: An exploration on the enhancement of the electrocatalytic activity of phthalocyanines (Pcs) through coupling with a series of graphene quantum dots (GQDs) is undertaken. The preliminary studies using symmetrical Pcs, a cobalt and an iron chloride tetra substituted diethylaminophenoxy Pc (complexes 1 and 2), for the electro-oxidation of nitrite revealed through the various sequential modifications that doped GQDs fare better than their pristine counterparts with respect to improving the electrocatalytic behaviour of Pcs, in particular, the nitrogen-doped GQDs (NGQDs). Following up on this, a series of asymmetric Pc complexes; 2,9,16-tris-(4-tert-butylphenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (3), 2,9,16-tris-(4-tert-butylphenoxy) mono aminophenoxy phthalocyanato cobalt (II) (4), 2,9,16-tris-(3-diethylamino)phenoxy) mono carboxyphenoxy phthalocyanato cobalt (II) (5) and 2,9,16-tris-(3-diethylamino)phenoxy) mono aminophenoxy phthalocyanato cobalt (II) (6) was prepared in which push-pull systems were compared to other asymmetric complexes that lack this effect towards the electrocatalytic sensing of hydrazine. All asymmetric complexes (3-6) were π-stacked to the NGQDs while those with an NH2 group (4 and 6), were also covalently linked to the NGQDs. These complexes and their corresponding conjugates were characterized accordingly and applied as electrocatalysts in the oxidation of hydrazine. The electrochemical studies revealed that π π stacking yields better responses (higher sensitivities and lower limits of detection) than covalent linking because there are less forces acting on the graphene network. Covalent linking introduces both tensile and compressive forces which in turn results in an increase in the ID/IG ratio and that is unfavourable for electrocatalysis. In comparing the electrodes composed of the π-stacked conjugates to those altered through sequential modifications, despite the conditions not being the same, it can be inferred that the magnitude of the electrostatic forces between the Pcs and the GQDs also plays a significant role in electrocatalysis. The π-stacked conjugates, owing to the manner in which they were prepared, have stronger electrostatic forces acting between the Pc and GQDs hence they were able to elicit a better electrochemical response than the sequentially modified electrodes. In addition to that, it appears that asymmetric Pcs are better electrocatalysts in comparison to the symmetric Pcs.
- Full Text:
Graphene quantum dots and their metallophthalocyanines nanoconjugates as novel photoluminescent nanosensors
- Authors: Achadu, Ojodomo John
- Date: 2018
- Subjects: Quantum dots , Graphene , Phthalocyanines , Nanoconjugates , Novel photoluminescent nanosensors , Metallophthalocyanines
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/60719 , vital:27821
- Description: The fabrication and application of graphene quantum dots (GQDs)-based photoluminescent probes for the detection of analytes is presented. GQDs were functionalized with complexes such as metallophthalocyanines (MPcs), metal nanoparticles (Au@Ag NPs), 2,2,6,6-tetramethyl(piperidin-1-yl)oxyl (TEMPO), maleimide and thymine for the sensing of target analytes such as ascorbic acid (AA), biothiols (cysteine, homocysteine and glutathione) and mercury ion (Hg²+). The design strategy and approach was based on the quenching of the fluorescence of the GQDs upon functionalization with the above-mentioned complexes, which could be restored in the presence of the target analytes (due to their specific interaction affinity with the complexes). For the detection of AA, GQDs were covalently and/or non-covalently conjugated to TEMPO-bearing complexes to form GQDs-4A-TEMPO and GQDs-TEMPO-MPc systems with nanomolar limits of detection. For the detection of biothiols, Au@Ag NPs and maleimide-bearing complexes (MPc), which have specific affinity to interact with biothiols, were deployed. Hg²+ detection involved the use of GQDs and/or MPcs with thiol and thymine groups, respectively. In addition, a smart sensing platform was designed for the dual detection of biothiols and Hg²+ using supramolecular hybrid of polyethyleneimine functionalized-GQDs and MPc-Au@Ag conjugate. The probe could detect, in a sequential manner, Hg²+ and biothiols with high sensitivity. Results obtained from the LODs of the probes showed that GQDs sensing performances could be enhanced in the presence of MPcs. The probes designed in this work were successfully deployed in the assays of the target analytes in real samples and the recoveries obtained confirmed the analytical applicability of the probes.
- Full Text:
- Authors: Achadu, Ojodomo John
- Date: 2018
- Subjects: Quantum dots , Graphene , Phthalocyanines , Nanoconjugates , Novel photoluminescent nanosensors , Metallophthalocyanines
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/60719 , vital:27821
- Description: The fabrication and application of graphene quantum dots (GQDs)-based photoluminescent probes for the detection of analytes is presented. GQDs were functionalized with complexes such as metallophthalocyanines (MPcs), metal nanoparticles (Au@Ag NPs), 2,2,6,6-tetramethyl(piperidin-1-yl)oxyl (TEMPO), maleimide and thymine for the sensing of target analytes such as ascorbic acid (AA), biothiols (cysteine, homocysteine and glutathione) and mercury ion (Hg²+). The design strategy and approach was based on the quenching of the fluorescence of the GQDs upon functionalization with the above-mentioned complexes, which could be restored in the presence of the target analytes (due to their specific interaction affinity with the complexes). For the detection of AA, GQDs were covalently and/or non-covalently conjugated to TEMPO-bearing complexes to form GQDs-4A-TEMPO and GQDs-TEMPO-MPc systems with nanomolar limits of detection. For the detection of biothiols, Au@Ag NPs and maleimide-bearing complexes (MPc), which have specific affinity to interact with biothiols, were deployed. Hg²+ detection involved the use of GQDs and/or MPcs with thiol and thymine groups, respectively. In addition, a smart sensing platform was designed for the dual detection of biothiols and Hg²+ using supramolecular hybrid of polyethyleneimine functionalized-GQDs and MPc-Au@Ag conjugate. The probe could detect, in a sequential manner, Hg²+ and biothiols with high sensitivity. Results obtained from the LODs of the probes showed that GQDs sensing performances could be enhanced in the presence of MPcs. The probes designed in this work were successfully deployed in the assays of the target analytes in real samples and the recoveries obtained confirmed the analytical applicability of the probes.
- Full Text:
- «
- ‹
- 1
- ›
- »