Investigation into methods of recovering campylobacter spp. from river water samples
- Authors: Ngoni, Nandipha
- Date: 2023-10-13
- Subjects: Campylobacter jejuni , Stream chemistry , Organic water pollutants South Africa Eastern Cape , Water quality Measurement , Turbidity , Physicochemical process
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424177 , vital:72130
- Description: Campylobacter species are slender, gram-negative, rod-shaped, spiral- or curved-shaped with single or pairs of flagella. They are the leading cause of diarrheal disease globally, consumption of and contact with water contaminated by faeces is a major risk factor for transmission of these organisms to humans. Rivers used for recreation and domestic and agricultural activities represent all the risk factors for Campylobacter spp. pollution and human exposure. Campylobacter spp. However, effective methods to recover Campylobacter spp. from river water samples are lacking, indicating the need for the development of more efficient methods of detection and isolation of these organisms from environmental water samples. Campylobacter detection in a water sample is critical to ascertain potential risks to humans. The aim of this study was to determine a suitable method for the detection of Campylobacter spp. from river water samples and the objectives were to (i) to evaluate the performance of different methods used for the recovery of Campylobacter spp. from environmental water samples based on Campylobacter colony count and PCR identification results, (ii) isolate and enumerate Campylobacter cells from river water samples, and (iii) identify Campylobacter spp. in river water samples. The Bloukrans River was chosen for this study because it is suspected to be contaminated by faecal inputs from nearby informal settlements without adequate sanitation, as well as untreated/insufficiently treated effluents from nearby wastewater treatment plants. First, the physicochemical quality of the river water and the presence of faecal contamination were assessed to confirm suitability for Campylobacter spp. survival and presence. Then different approaches to sample, concentrate and recover Campylobacter spp. from river water samples were assessed. The different methods assessed were (i) direct enrichment of water samples without prior concentration, (ii) prior concentration of water samples by centrifugation followed by membrane filtration of supernatant, and after that, pooling the residue and pellet together for enrichment, (iii) sampling by the Moore Swab technique. For all three methods, enrichment in Bolton broth supplemented with Bolton antibiotics was conducted. This was followed by plating on modified cefoperazone charcoal deoxycholate agar (mCCDA) and incubation under a microaerophilic atmosphere at 42°C for 48 h. Colony morphology, Gram staining and polymerase chain reaction (PCR) were used to identify and characterize the microorganisms. The growth of blue colonies on the mFc agar surface confirmed presence and faecal pollution of the Bloukrans River. The physicochemical properties, based on the range of pH measured at different sites of the river (between acidic 3.45 to 6.42 and alkaline 7.2 to 8.74) indicate that Campylobacter spp. can thrive in the river. Based on the results from enumeration and sequencing of colonies recovered by each method, it was discovered that the most suitable method to recover Campylobacter spp. from river water samples is by prior centrifugation (14,000 × g for 30 minutes) followed by membrane filtration of the supernatant, and subsequent pooling of the residue and pellet. The pooled residue and pellet might have increased Campylobacter spp. concentrations aiding more growth during the enrichment of Campylobacter spp. from the river water samples. Results from enumerating Campylobacter spp. cells from river water samples indicate that Campylobacter spp. are present in Bloukrans River. The sequence obtained from the PCR product indicates that the species found were Campylobacter jejuni (96% homology as evaluated by BLAST). This study provided a procedure effective for obtaining a satisfactory quantitative recovery of Campylobacter spp. from environmental waters, a critical need for quantitative microbial risk assessment studies. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Phytoplankton and aquatic macroinvertebrate assemblages from coastal and inland lakes of South Africa
- Authors: Nkibi, Esethu
- Date: 2023-10-13
- Subjects: Aquatic biodiversity South Africa , Indicators (Biology) , Lakes South Africa , Physicochemical process , Salinity , Phytoplankton , Aquatic macroinvertebrates
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424435 , vital:72153
- Description: Freshwater lakes are generally defined as permanent natural standing water bodies, with some of them having a direct and indirect connection with groundwater, rivers, and the ocean. Freshwater lakes provide essential socio-economic and ecological goods and services including recreation, aesthetic, support aquatic biodiversity, food in a form of fisheries and water for domestic use. Given their critical role in sustainability in providing socio-economic services, freshwater lakes are among the most threatened ecosystems globally due to intense human impacts over the last decades. South Africa has limited freshwater lakes, which according to the National Biodiversity Assessment (NBA 2018), we know little about their current biology except historic aquatic biodiversity studies conducted in the early 1940s. There are no management strategies in place to protect and conserve freshwater lake biodiversity and important ecosystem services. This thesis aims to: (1) produce a biodiversity inventory of phytoplankton and aquatic macroinvertebrate species and, (2) investigate important environmental drivers responsible for phytoplankton and aquatic macroinvertebrate species composition from six South African freshwater lakes. It was hypothesized that the three lake types will show different phytoplankton and aquatic macroinvertebrates species composition attributed by the geographical region (coastal and inland lake) and related physico-chemical parameters. Study sites consisted of two Northern KwaZulu-Natal coastal lakes (hereafter Coastal Lakes, CL) i.e., Lake Sibaya, Lake Mzingazi; two fresh inland lakes (hereafter Fresh Inland Lakes, FIL) i.e., Lake Banagher fresh and Lake Tevrede Se Pan; and two inland salt lakes (hereafter Salt Inland Lakes, SIL) i.e., Lake Banagher salt and Lake Chrissiesmeer, all inland lakes are situated in Mpumalanga province, together with other Pans making up the Mpumalanga Lake District of South Africa. The study sites were categorized based on their geographical position i.e., coastal vs inland and physico-chemical characteristics i.e., the presence and absence of aquatic vegetation, dominate substrate, salinity and different physico-chemical concentration i.e., Temperature, Dissolved Oxygen. Aquatic macroinvertebrates were collected from four littoral zone sites (< 1-meter depth) around each lake, whereas phytoplankton samples were collected from four water column sites (> 5-meters depth) and (0.5-meter depth) from the water surface at each lake during summer and winter season. The results were consistent with our hypothesis that both phytoplankton and aquatic macroinvertebrate species composition were influenced by physico-chemical parameters and that the differences in salinity concentration and aquatic vegetation between CL, FIL, and SIL were the driving factors for phytoplankton and aquatic macroinvertebrate species composition. In summary, one hundred and twenty-two phytoplankton taxa were collected and identified during this study, belonging to seven Phyla which included Chlorophyta, Bacillariophyta, Cyanophyta, Chrysophyta, Dinophyta, Euglenophyta, and Cryptophyta. The most abundant phytoplankton groups were Bacillariophyta and Chlorophyta. Phytoplankton relative taxa abundance, Pielou’s evenness, taxa richness, and Shannon diversity were significantly different between lake types. Aquatic macroinvertebrates, on the other hand, summed up to 10 orders, 67 families, and 80 taxa. The most abundant group were the order Coleoptera, Hemiptera, Odonata, and Gastropoda. Aquatic macroinvertebrate relative taxa abundance, taxa richness, and Shannon diversity were also significantly different between lake types. Aquatic macroinvertebrate relative taxa abundance, Pielous evenness, and Shannon diversity index were not significant between seasons, and only taxa richness was significant. Canonical analysis of principal coordinates (CAP) results further showed unique and distinct phytoplankton and aquatic macroinvertebrates community composition between lake types. The present study provides baseline biodiversity inventory (or species list) for important lake ecosystems biological indicators i.e., phytoplankton and aquatic macroinvertebrates and species composition in relation to lake type for six freshwater lakes in South Africa. Furthermore, the study provides empirical evidence that will inform policy and the development of management strategies for freshwater lakes in South Africa which is currently missing. The current study will also contribute to the next National Biodiversity Assessment Report (2024), concerning the freshwater lakes biological data deficiency noted in the previous NBA (2018) report. The study will also fill up the gaps to better understand species composition in lake systems and how they function which is currently limited. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13