An ion imprinted polymer for the determination of Ni (II) ions from mine tailing samples
- Authors: Rammika, Modise
- Date: 2011
- Subjects: Imprinted polymers , Metal ions , Polymerization , Mineral industries -- Waste disposal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4323 , http://hdl.handle.net/10962/d1004981 , Imprinted polymers , Metal ions , Polymerization , Mineral industries -- Waste disposal
- Description: A Ni(II)-dimethylglyoxime ion imprinted polymer {Ni(II)-DMG IIP} was synthesized by the trapping method using the bulk polymerisation format. The structures of the imprinted and non-imprinted polymer were evaluated by infrared spectroscopy and the morphology was observed by scanning electron microscopy. The Ni(II)-DMG IIP was optimised for pH, mass, time and by the uniform design experimental method for the molar ratios of monomer to crosslinker to porogen and template to ligands as well as keeping these parameters constant and varying the quantities of initiator, 2,2'-azobisisobutyronitrile (AIBN). The optimum pH was 8.5, optimum mass was 50 mg, optimum time was 1 min and the optimum molar ratios of crosslinker to monomer, monomer to template and nickel(II) sulfate hexahydrate (NiSO₄.6H₂O) to 4-vinylpyridine to dimethylglyoxime were found to be 3.3:1.0, 0.6:1.0 and 1.0:0.6:3.6 respectively with 30 mg and 8 mL as the optimum amounts of initiator and porogen respectively. Through this optimisation, recovery of Ni(II) was increased from 98 to 100%. Selectivity of the ion imprinted polymer was evaluated by analysing, using an inductively coupled plasma-optical emission spectrometer, for Ni(II) ions that were spiked with varying concentrations of Co(II), Cu(II), Zn(II), Pd(II), Fe(II), Ca(II), Mg(II), Na(I) and K(I) in aqueous samples. Selectivity studies also confirmed that the ion imprinted polymer had very good selectivity characterised by % RSD of less than 5 %. Co(II) was the only ion found to slightly interfere with the determination of Ni(II). The limits of detection and quantification were found to be 3x10⁻⁴ μg/mL and 9x10⁻⁴ μg/mL respectively. The method was evaluated by a custom solution of ground water certified reference material (SEP-3) and sandy soil reference material (BCR-142R) and the concentrations of Ni(II) obtained were not significantly different to the certified ones. The Ni(II)-DMG IIP was then evaluated in aqueous and soil samples where recoveries of 93 to 100% and 98 to 99% respectively were obtained with enrichment factors ranging from 2 to 18 in aqueous and 27 to 40 in soil samples. Finally, the Ni(II)-DMG IIP was used to analyse mine tailings samples and Ni(II) recovery of 99% was obtained with an enrichment factor of 2.
- Full Text:
- Date Issued: 2011
- Authors: Rammika, Modise
- Date: 2011
- Subjects: Imprinted polymers , Metal ions , Polymerization , Mineral industries -- Waste disposal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4323 , http://hdl.handle.net/10962/d1004981 , Imprinted polymers , Metal ions , Polymerization , Mineral industries -- Waste disposal
- Description: A Ni(II)-dimethylglyoxime ion imprinted polymer {Ni(II)-DMG IIP} was synthesized by the trapping method using the bulk polymerisation format. The structures of the imprinted and non-imprinted polymer were evaluated by infrared spectroscopy and the morphology was observed by scanning electron microscopy. The Ni(II)-DMG IIP was optimised for pH, mass, time and by the uniform design experimental method for the molar ratios of monomer to crosslinker to porogen and template to ligands as well as keeping these parameters constant and varying the quantities of initiator, 2,2'-azobisisobutyronitrile (AIBN). The optimum pH was 8.5, optimum mass was 50 mg, optimum time was 1 min and the optimum molar ratios of crosslinker to monomer, monomer to template and nickel(II) sulfate hexahydrate (NiSO₄.6H₂O) to 4-vinylpyridine to dimethylglyoxime were found to be 3.3:1.0, 0.6:1.0 and 1.0:0.6:3.6 respectively with 30 mg and 8 mL as the optimum amounts of initiator and porogen respectively. Through this optimisation, recovery of Ni(II) was increased from 98 to 100%. Selectivity of the ion imprinted polymer was evaluated by analysing, using an inductively coupled plasma-optical emission spectrometer, for Ni(II) ions that were spiked with varying concentrations of Co(II), Cu(II), Zn(II), Pd(II), Fe(II), Ca(II), Mg(II), Na(I) and K(I) in aqueous samples. Selectivity studies also confirmed that the ion imprinted polymer had very good selectivity characterised by % RSD of less than 5 %. Co(II) was the only ion found to slightly interfere with the determination of Ni(II). The limits of detection and quantification were found to be 3x10⁻⁴ μg/mL and 9x10⁻⁴ μg/mL respectively. The method was evaluated by a custom solution of ground water certified reference material (SEP-3) and sandy soil reference material (BCR-142R) and the concentrations of Ni(II) obtained were not significantly different to the certified ones. The Ni(II)-DMG IIP was then evaluated in aqueous and soil samples where recoveries of 93 to 100% and 98 to 99% respectively were obtained with enrichment factors ranging from 2 to 18 in aqueous and 27 to 40 in soil samples. Finally, the Ni(II)-DMG IIP was used to analyse mine tailings samples and Ni(II) recovery of 99% was obtained with an enrichment factor of 2.
- Full Text:
- Date Issued: 2011
An ion imprinted polymer for the selective extraction of mercury (II) ions in aqueous media
- Authors: Batlokwa, Bareki Shima
- Date: 2010 , 2013-07-18
- Subjects: Mercury , Metal ions , Imprinted polymers , Polymerization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4294 , http://hdl.handle.net/10962/d1004541 , Mercury , Metal ions , Imprinted polymers , Polymerization
- Description: This thesis presents the application of an imprinted mercury(lI) polymer that we synthesized by copolymerizing the functional and cross-linking monomers, N'-[3-(Trimethoxysilyl)propyl] diethylenetriamine (TPET) and tetraethylorthosilicate (TEOS) in the presence of mercury (II) ions as template. A bulk polymerization method following a double-imprinting procedure and employing hexadecyltrimethylammonium bromide (CTAB), as a second template to improve the efficiency of the polymer was employed in the synthesis. The imprinted polymer particles were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and their average size determined by screen analysis using standard test sieves. The relative selective coefficients (k') of the imprinted polymer evaluated from selective binding studies between Hg ²⁺and Cu²⁺ or Hg²⁺ and Cd²⁺, were 10588 and 3147, respectively. These values indicated highly favored Hg²⁺ extractions over the two competing ions. Application of the polymer to various real water samples (tap, sea, river, pulverized coal solution, treated and untreated sewerage from the vicinity of Grahamstown in South Africa) showed high extraction efficiencies (EEs) of Hg²⁺ ions; (over 84% in all cases) as evaluated from the detected unextracted Hg²⁺ ions by inductively coupled plasma optical emission spectroscopy (ICP-OES). The limit of detection (LOD, 3ơ) of the method was evaluated to be 0.036 ng ml⁻¹ and generally the data (n=10) had percentage relative standard deviation (%RSD) of less than 4%. These findings indicate that the double-imprinted polymer has potential to be used as an efficient extraction material for the selective pre-concentration of mercury(lI) ions in aqueous environments. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2010
- Authors: Batlokwa, Bareki Shima
- Date: 2010 , 2013-07-18
- Subjects: Mercury , Metal ions , Imprinted polymers , Polymerization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4294 , http://hdl.handle.net/10962/d1004541 , Mercury , Metal ions , Imprinted polymers , Polymerization
- Description: This thesis presents the application of an imprinted mercury(lI) polymer that we synthesized by copolymerizing the functional and cross-linking monomers, N'-[3-(Trimethoxysilyl)propyl] diethylenetriamine (TPET) and tetraethylorthosilicate (TEOS) in the presence of mercury (II) ions as template. A bulk polymerization method following a double-imprinting procedure and employing hexadecyltrimethylammonium bromide (CTAB), as a second template to improve the efficiency of the polymer was employed in the synthesis. The imprinted polymer particles were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and their average size determined by screen analysis using standard test sieves. The relative selective coefficients (k') of the imprinted polymer evaluated from selective binding studies between Hg ²⁺and Cu²⁺ or Hg²⁺ and Cd²⁺, were 10588 and 3147, respectively. These values indicated highly favored Hg²⁺ extractions over the two competing ions. Application of the polymer to various real water samples (tap, sea, river, pulverized coal solution, treated and untreated sewerage from the vicinity of Grahamstown in South Africa) showed high extraction efficiencies (EEs) of Hg²⁺ ions; (over 84% in all cases) as evaluated from the detected unextracted Hg²⁺ ions by inductively coupled plasma optical emission spectroscopy (ICP-OES). The limit of detection (LOD, 3ơ) of the method was evaluated to be 0.036 ng ml⁻¹ and generally the data (n=10) had percentage relative standard deviation (%RSD) of less than 4%. These findings indicate that the double-imprinted polymer has potential to be used as an efficient extraction material for the selective pre-concentration of mercury(lI) ions in aqueous environments. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »