Computational studies in human African trypanosomiasis
- Authors: Muronzi, Tendai
- Date: 2023-10-13
- Subjects: African trypanosomiasis , Apolipoprotein L1 , Docking , Protein-protein interactions , Homology modeling , Tetrahydrofolate dehydrogenase , Pteridine reductase
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/431883 , vital:72812 , DOI 10.21504/10962/431885
- Description: Human African trypanosomiasis (HAT) is a neglected tropical disease (NTD) caused by two subspecies of the parasite, namely Trypanosoma brucei (Tb) gambiense (g-HAT) and rhodesiense (r-HAT). HAT is endemic in sub-Saharan countries, where the parasite transmission vectors, tsetse flies, breed. An estimated 70 million people remain at risk of contracting the disease, where the infection is classified as acute or chronic for g-HAT and r-HAT, respectively, with both forms ending in fatal meningoencephalitis when left untreated. Both g-HAT and r-HAT are responsible for widespread fatal epidemics throughout sub-Saharan African history, resulting from the complex molecular interplay between trypanosomes and humans through unique, innate immunity evasion mechanisms. Of interest, the Tbr subspecies expresses a serum resistance-associated protein (SRA), which binds to human serum lytic factor, apolipoprotein L1 (ApoL1), nullifying any trypanocidal activity. In response, ApoL1 (G1 and G2) variants found in humans of sub-Saharan African lineage have been cited for conferring resistance to the r-HAT infection in an interaction that is not fully elucidated In the event of successful infection, current HAT chemotherapeutics are plagued with complexity of administration, poor efficacy, toxicity, and potential drug resistance, highlighting a need for improved approaches. The parasite folate pathway provides a strategic target for alternative anti-trypanosomal drug development as trypanosomatids are folate auxotrophs, requiring host folate for growth and survival. Validated drug targets pteridine reductase (TbPTR1) and dihydrofolate reductase (TbDHFR) are essential for salvaging cofactors folate and folate biopterin crucial to parasite survival, making them viable targets for anti-folate investigation. The overall aims of this thesis were to a) provide insights into the molecular and dynamic basis of the SRA and ApoL1 interplay in HAT infection and b) identify safer and more efficient anti-folate anti-trypanosomal drug alternatives through in silico approaches. To achieve our first aim, in silico structure prediction was applied to generate 3D models of ApoL1 C-terminal variants G0, G1, G1G/M, G2 and G1G2, and four SRA variants retrieved from the NCBI database. The SRA and ApoL1 structures were inspected dynamically to identify the effect of the variants through molecular dynamics (MD) simulations. Dynamic residue network (DRN) analysis of MD trajectories was fundamental in identifying residues playing a vital role in the intramolecular communication of both proteins in the presence of mutations. Protein-protein docking was then applied to calculate plausible SRA-ApoL1 C-terminal wild-type complex structures to further elucidate the nature of SRA-mediated infection. Through MD simulations, twelve SRA-ApoL1 dimeric structures were narrowed down from five to two energetically sound complexes. The two feasible SRA-ApoL1 complexes (1 and 2) exhibited favourable communication observed through DRN analysis, including the retaining key communication residues identified in prior monomer DRN calculations. ApoL1 C-terminal variants were additionally incorporated into SRA-ApoL1 complexes 1 and 2 for further complex dynamics analysis This investigation into the nature of SRA-ApoL1 binding resulted in five primary outcomes: 1) highlighting the intramolecular effects ApoL1 variants have on the stability of the protein, 2) the identification of crucial SRA and ApoL1 communication residues in both monomeric or dimeric form, 3) the isolation of feasible SRA-ApoL1 complexes determined through global and local structural analyses 4) identification of residues crucial to the complex formation and maintenance of SRA-ApoL1, overlapping with those identified in (1), and 5) the minimal dissociative role of the G1 mutations in the complex, but compounding effect of the G2 deletion mutation. Computational modelling and drug repurposing were employed to achieve the thesis's second aim as they drastically cut down the costs involved in drug discovery and provide a more time-efficient screening method through numerous drug candidates. Using high throughput virtual screening, a subset of 2089 approved DrugBank compounds were screened against TbPTR1. The outputs were filtered to 24 viable compounds in 54 binding poses using binding energy and molecular interactions. Through subsequent MD simulations of 200ns, thirteen potential hit compounds were identified. The resultant hit compounds were subjected to further blind docking against TbDHFR and molecular dynamics to identify compounds with the potential for dual inhibition. The filtered subset was also tested in in vitro single concentration and dose-response bioassays to assess inhibitory properties against Trypanosoma brucei, complementing in silico findings. Post-molecular dynamics, four compounds exhibited high stabilities and molecular interactions with both TbPTR1 and TbDHFR, with two presenting favourable results in the in vitro assays. Three compounds additionally shared common structural moieties. In all, the in silico repurposing highlighted drugs characterised by favourable interactions and stabilities in TbPTR1, thus providing (1) a framework for further studies investigating anti-folate HAT compounds and (2) modulatory scaffolds based on identified moieties that can be used for the design of safe anti-folate trypanosomal drugs. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2023
- Full Text:
- Date Issued: 2023-10-13
Development and optimisation of a novel Plasmodium falciparum Hsp90-Hop interaction assay
- Authors: Wambua, Lynn
- Date: 2018
- Subjects: Plasmodium falciparum , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Antimalarials
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62626 , vital:28216
- Description: Protein-protein interactions are involved in a range of disease processes and thus have become the focus of many drug discovery programs. Widespread drug resistance to all currently used antimalarial drugs drives the search for alternative drug targets with novel mechanisms of action that offer new therapeutic options. Molecular chaperones such as heat shock proteins facilitate protein folding, play a role in protein trafficking and prevent protein misfolding in cells under stress. Heat shock protein 90 (Hsp90) is a well-studied chaperone that has been the focus of cancer drug development with moderate success. In Plasmodium falciparum (P. falciparum), heat shock proteins are thought to play a vital role in parasite survival of the physiologically diverse habitats of the parasite lifecycle and because Hsp90 is prominently expressed in P. falciparum, the chaperone is considered a potentially ideal drug target. Hsp90 function in cells is regulated by interactions with co-chaperones, which includes Heat shock protein 70-Heat shock protein 90 organising protein (Hop). As opposed to directly inhibiting Hsp90 activity, targeting Hsp90 interaction with Hop has recently been suggested as an alternative method of Hsp90 inhibition that has not been explored in P. falciparum. The aim of this research project was to demonstrate PfHsp90 and PfHop robustly interact in vitro and to facilitate high-throughput screening of PfHsp90-PfHop inhibitors by developing and optimising a novel plate capture Hsp90-Hop interaction assay. To establish the assay, the respective domains of the proteins that mediate Hsp90-Hop interaction were used (Hsp90 C- terminal domain and Hop TPR2A domain). The human Hsp90 C-terminal domain and glutathione-S-transferase (GST) coding sequences were cloned into pET-28a(+) and murine and P. falciparum TPR2A sequences into pGEX-4T-1 plasmids to enable expression of histidine-tagged and GST fusion proteins, respectively, in Escherichia coli. The P. falciparum Hsp90 C-terminal domain sequence cloned into pET-28a(+) was supplied by GenScript. The constructs were transformed into T7 Express lysYcompetent E. coli cells and subsequent small- scale expression studies showed the recombinant proteins were expressed in a soluble form allowing for subsequent protein purification. Purification of the recombinant proteins was achieved using nickel-NTA and glutathione affinity chromatography for the His-tagged (Hsp90 C-terminal domains and GST) and GST fusion proteins (TPR2A domains), respectively. The purified proteins were used to establish and optimise mammalian and P. falciparum Hsp90- Hop interaction assays on nickel-coated plates by immobilising the His-tagged C-terminal domains on the plates and detecting the binding of the GST-TPR2A domains using a colorimetric GST enzyme assay. Z’-factor values above 0.5 were observed for both assays indicating good separation between the protein interaction signals and negative control background signals, although relatively high background signals were observed for the mammalian interaction due to non-specific binding of murine TPR2A to the plate. Designed human and P. falciparum TPR peptides were observed to be effective inhibitors of the mammalian and P. falciparum interactions, demonstrating the assay’s ability to respond to inhibitor compounds. Comparison of assay performance using GST assay kit reagents and lab- prepared reagents showed the assay was more efficient using lab-prepared reagents, however, lower GST signals were observed when comparing assay performance using a custom prepared Ni-NTA plate to a purchased Ni-NTA plate. The Hsp90-Hop interaction assays were also performed using an alternative assay format in which the GST-TPR2A fusion proteins were immobilised on glutathione-coated plates and binding of the His-tagged C-terminal domains detected with a nickel-horseradish peroxidase (HRP) conjugate and a colorimetric HRP substrate. The assay showed higher interaction signals for the P. falciparum proteins but comparatively low signals for the mammalian proteins. Z’-factor values for the assay were above 0.8 for both protein sets, suggesting this assay format is superior to the GST assay. However, further optimisation of this assay format is required. This study demonstrated direct binding of PfHsp90-PfHop in vitro and established a novel and robust PfHsp90-PfHop interaction assay format that can be used in future screening campaigns.
- Full Text:
- Date Issued: 2018
In silico analysis of human Hsp90 for the identification of novel anti-cancer drug target sites and natural compound inhibitors
- Authors: Penkler, David Lawrence
- Date: 2015
- Subjects: Heat shock proteins , Cancer -- Treatment , Molecular chaperones , Homeostasis , Carcinogenesis , Chemotherapy , Ligand binding (Biochemistry) , Protein-protein interactions
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4162 , http://hdl.handle.net/10962/d1018938
- Description: The 90-KDa heat shock protein (Hsp90) is part of the molecular chaperone family, and as such it is involved in the regulation of protein homeostasis within cells. Specifically, Hsp90 aids in the folding of nascent proteins and re-folding of denatured proteins. It also plays an important role in the prevention of protein aggregation. Hsp90’s functionality is attributed to its several staged, multi-conformational ATPase cycle, in which associated client proteins are bound and released. Hsp90 is known to be associated with a wide array of client proteins, some of which are thought to be involved in multiple oncogenic processes. Indeed Hsp90 is known to be directly involved in perpetuating the stability and function of multiple mutated, chimeric and over-expressed signalling proteins that are known to promote the growth and survival of cancer cells. Hsp90 inhibitors are thus thought to be promising therapeutic agents for cancer treatment. A lack of a 3D structure of human Hsp90 however has restricted Hsp90 inhibitor development in large to in vivo investigations. This study, aims to investigate and calculate hypothetical homology models of the full human Hsp90 protein, and to probe these structural models for novel drug target sites using several in silico techniques. A multi-template homology modelling methodology was developed and in conjunction with protein-protein docking techniques, two functionally important human Hsp90 structural models were calculated; the nucleotide free “v-like” open and nucleotide bound closed conformations. Based on the conservation of ligand binding, virtual screening experiments conducted on both models using 316 natural compounds indigenous to South Africa, revealed three novel putative target sites. Two binding pockets in close association with important Hsp90-Hop interaction residues and a single binding pocket on the dimerization interface in the C-terminal domain. Targeted molecular docking experiments at these sites revealed two compounds (721395-11-5 and 264624-39-7) as putative inhibitors, both showing strong binding affinities for at least one of the three investigated target sites. Furthermore both compounds were found to only violate one Lipinski’s rules, suggesting their potential as candidates for further drug development. The combined work described here provides a putative platform for the development of next generation inhibitors of human Hsp90.
- Full Text:
- Date Issued: 2015
Characterization of the Hsp40 partner proteins of Plasmodium falciparum Hsp70
- Authors: Njunge, James Mwangi
- Date: 2014
- Subjects: Plasmodium falciparum , Heat shock proteins , Malaria -- Chemotherapy , Protein-protein interactions , Erythrocytes -- Biotechnology , Molecular chaperones , Host-parasite relationships , Mitochondria
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4117 , http://hdl.handle.net/10962/d1013186
- Description: Human malaria is an economically important disease caused by single-celled parasites of the Plasmodium genus whose biology displays great evolutionary adaptation to both its mammalian host and transmitting vectors. This thesis details the 70 kDa heat shock protein (Hsp70) and J protein chaperone complements in malaria parasites affecting humans, primates and rodents. Heat shock proteins comprise a family of evolutionary conserved and structurally related proteins that play a crucial role in maintaining the structural integrity of proteins during normal and stress conditions. They are considered future therapeutic targets in various cellular systems including Plasmodium falciparum. J proteins (Hsp40) canonically partner with Hsp70s during protein synthesis and folding, trafficking or targeting of proteins for degradation. However, in P. falciparum, these classes of proteins have also been implicated in aiding the active transport of parasite proteins to the erythrocyte cytosol following erythrocyte entry by the parasite. This host-parasite “cross-talk” results in tremendous modifications of the infected erythrocyte, imparting properties that allow it to adhere to the endothelium, preventing splenic clearance. The genome of P. falciparum encodes six Hsp70 homologues and a large number of J proteins that localize to the various intracellular compartments or are exported to the infected erythrocyte cytosol. Understanding the Hsp70-J protein interactions and/or partnerships is an essential step for drug target validation and illumination of parasite biology. A review of these chaperone complements across the Plasmodium species shows that P. falciparum possesses an expanded Hsp70-J protein complement compared to the rodent and primate infecting species. It further highlights how unique the P. falciparum chaperone complement is compared to the other Plasmodium species included in the analysis. In silico analysis showed that the genome of P. falciparum encodes approximately 49 J proteins, 19 of which contain a PEXEL motif that has been implicated in routing proteins to the infected erythrocyte. Most of these PEXEL containing J proteins are unique with no homologues in the human system and are considered as attractive drug targets. Very few of the predicted J proteins in P. falciparum have been experimentally characterized. To this end, cell biological and biochemical approaches were employed to characterize PFB0595w and PFD0462w (Pfj1) J proteins. The uniqueness of Pfj1 and the controversy in literature regarding its localization formed the basis for the experimental work. This is the first study showing that Pfj1 localizes to the mitochondrion in the intraerythrocytic stage of development of P. falciparum and has further proposed PfHsp70-3 as a potential Hsp70 partner. Indeed, attempts to heterologously express and purify Pfj1 for its characterization are described. It is also the first study that details the successful expression and purification of PfHsp70-3. Further, research findings have described for the first time the expression and localization of PFB0595w in the intraerythrocytic stages of P. falciparum development. Based on the cytosolic localization of both PFB0595w and PfHsp70-1, a chaperone – cochaperone partnership was proposed that formed the basis for the in vitro experiments. PFB0595w was shown for the first time to stimulate the ATPase activity of PfHsp70-1 pointing to a functional interaction. Preliminary surface plasmon spectroscopy analysis has revealed a potential interaction between PFB0595w and PfHsp70-1 but highlights the need for further related experiments to support the findings. Gel filtration analysis showed that PFB0595w exists as a dimer thereby confirming in silico predictions. Based on these observations, we conclude that PFB0595w may regulate the chaperone activity of PfHsp70-1 in the cytosol while Pfj1 may play a co-chaperoning role for PfHsp70-3 in the mitochondrion. Overall, this data is expected to increase the knowledge of the Hsp70-J protein partnerships in the erythrocytic stage of P. falciparum development, thereby enhancing the understanding of parasite biology.
- Full Text:
- Date Issued: 2014
Structural bioinformatics analysis of the Hsp40 and Hsp70 molecular chaperones from humans
- Authors: Adeyemi, Samson Adebowale
- Date: 2014
- Subjects: Structural bioinformatics , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Biomolecules
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4171 , http://hdl.handle.net/10962/d1020962
- Description: HSP70 is one of the most important families of molecular chaperone that regulate the folding and transport of client proteins in an ATP dependent manner. The ATPase activity of HSP70 is stimulated through an interaction with its family of HSP40 co-chaperones. There is evidence to suggest that specific partnerships occur between the different HSP40 and HSP70 isoforms. While some of the residues involved in the interaction are known, many of the residues governing the specificity of HSP40-HSP70 partnerships are not precisely defined. It is not currently possible to predict which HSP40 and HSP70 isoforms will interact. We attempted to use bioinformatics to identify residues involved in the specificity of the interaction between the J domain from HSP40 and the ATPase domain from the HSP70 isoforms from humans. A total of 49 HSP40 and 13 HSP70 sequences from humans were retrieved and used for subsequent analyses. The HSP40 J domains and HSP70 ATPase domains were extracted using python scripts and classified according to the subcellular localization of the proteins using localization prediction programs. Motif analysis was carried out using the full length HSP40 proteins and Multiple Sequence Alignment (MSA) was performed to identify conserved residues that may contribute to the J domain – ATPase domain interactions. Phylogenetic inference of the proteins was also performed in order to study their evolutionary relationship. Homology models of the J domains and ATPase domains were generated. The corresponding models were docked using HADDOCK server in order to analyze possible putative interactions between the partner proteins using the Protein Interactions Calculator (PIC). The level of residue conservation was found to be higher in Type I and II HSP40 than in Type III J proteins. While highly conserved residues on helixes II and III could play critical roles in J domain interactions with corresponding HSP70s, conserved residues on helixes I and IV seemed to be significant in keeping the J domain in its right orientation for functional interactions with HSP70s. Our results also showed that helixes II and III formed the interaction interface for binding to HSP70 ATPase domain as well as the linker residues. Finally, data based docking procedures, such as applied in this study, could be an effective method to investigate protein-protein interactions complex of biomolecules.
- Full Text:
- Date Issued: 2014
In-silico analysis of Plasmodium falciparum Hop protein and its interactions with Hsp70 and Hsp90
- Authors: Clitheroe, Crystal-Leigh
- Date: 2013
- Subjects: Plasmodium falciparum , Heat shock proteins , Molecular chaperones , Homology (Biology) , Protein-protein interactions , Malaria -- Chemotherapy
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3896 , http://hdl.handle.net/10962/d1003819 , Plasmodium falciparum , Heat shock proteins , Molecular chaperones , Homology (Biology) , Protein-protein interactions , Malaria -- Chemotherapy
- Description: A lessor understood co-chaperone, the Hsp70/Hsp90 organising protein (Hop), has been found to play an important role in modulating the activity and co-interaction of two essential chaperones; Hsp90 and Hsp70. The best understood aspects of Hop so far indicate that residues in the concave surfaces of the three tetratricopeptide repeat (TPR) domains in the protein bind selectively to the C-terminal motifs of Hsp70 and Hsp90. Recent research suggests that P. falciparum Hop (PfHop), PfHsp90 and PfHsp70 do interact and form complex in the P. falciparum trophozooite and are overexpressed in this infective stage. However, there has been almost no computational research on malarial Hop protein in complex with other malarial Hsps.The current work has focussed on several aspects of the in-silico characterisation of PfHop, including an in-depth multiple sequence alignment and phylogenetic analysis of the protein; which showed that Hop is very well conserved across a wide range of available phyla (four Kingdoms, 60 species). Homology modelling was employed to predict several protein structures for these interactions in P. falciparum, as well as predict structures of the relevant TPR domains of Human Hop (HsHop) in complex with its own Hsp90 and Hsp70 C-terminal peptide partners for comparison. Protein complex interaction analyses indicate that concave TPR sites bound to the C-terminal motifs of partner proteins are very similar in both species, due to the excellent conservation of the TPR domain’s “double carboxylate binding clamp”. Motif analysis was combined with phylogenetic trees and structure mapping in novel ways to attain more information on the evolutionary conservation of important structural and functional sites on Hop. Alternative sites of interaction between Hop TPR2 and Hsp90’s M and C domains are distinctly less well conserved between the two species, but still important to complex formation, making this a likely interaction site for selective drug targeting. Binding and interaction energies for all modelled complexes have been calculated; indicating that all HsHop TPR domains have higher affinities for their respective C-terminal partners than do their P. falciparum counterparts. An alternate motif corresponding to the C-terminal motif of PfHsp70-x (exported to the infected erythrocyte cytosol) in complex with both human and malarial TPR1 and TPR2B domains was analysed, and these studies suggest that the human TPR domains have a higher affinity for this motif than do the respective PfHop TPR domains. This may indicate potential for a cross species protein interaction to take place, as PfHop is not transported to the human erythrocyte cytosol.
- Full Text:
- Date Issued: 2013