Performance evaluation and cost analysis of subsurface flow constructed wetlands designed for ammonium-nitrogen removal
- Authors: Tebitendwa, Sylvie Muwanga
- Date: 2018
- Subjects: Sewage Purification Nitrogen removal , Constructed wetlands , Bioremediation , Sewage lagoons , Coal mine waste
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/61808 , vital:28062
- Description: Subsurface flow constructed wetlands (SSF CWs) is a low-cost, environmentally friendly sanitation technology for on-site treatment of domestic/municipal sewage. However, these systems are apparently unable to produce treated water of a quality suitable for discharge particularly in terms of nitrogen concentration, which has been attributed to design and operation based on biological oxygen demand as the parameter of choice. The aim of this study was to evaluate the performance, support medium, and techno-economics of a vertical- horizontal (V-H) SSF hybrid CW designed and operated using ammonium-nitrogen (NH4+-N) as the major parameter. Two pilot scale V-H SSF hybrid CWs were designed, constructed, and the performance of each monitored over two seasons and under two phases i.e. an initiation phase, and an optimization phase. Laboratory-scale horizontal SSF CWs were used to evaluate the support medium while the techno-economic study was framed to determine the cost effectiveness of V-H SSF hybrid CWs relative to high rate algal oxidation pond (HRAOP) systems to increase capacity of overloaded and/or under-performing waste stabilization pond (WSP) sewage treatment plants. Results revealed that under optimal operating conditions of hydraulic loading rate, hydraulic retention, and influent NH4+-N loading rate, treated water from the V-H SSF hybrid CWs achieved a quality commensurate with current South African standards for discharge into a surface water resource for all parameters except chemical oxygen demand and faecal coliforms. This suggests that NH4+-N is an important design and operational parameter for SSF CWs treating municipal sewage that is characterised as weak in terms of NH4+-N with a requirement of only simple disinfection such as chlorination to eliminate faecal coliforms. Use of discard coal to replace gravel as support medium in horizontal SSF CWs revealed an overall reduction in elemental composition of the discard coal support medium but without compromising water quality. This result strongly supports use of discard coal as an appropriate substrate for SSF CWs to achieve acceptable water quality. Furthermore, simultaneous degradation of discard coal during wastewater treatment demonstrates the versatility of SSF CWs for use in bio-remediation and pollution control. Finally, a technoeconomic assessment of V-H SSF hybrid CWs and a HRAOP series was carried out to determine the suitability of each process to increase capacity by mitigating dysfunctional and/or overloaded WSP sewage treatment plants. Analysis revealed that the quality of treated water from both systems was within the South African General Authorization standards for discharge to a surface water resource. Even so, each technology system presented its own set of limitations including; the inability to satisfactorily remove NH4+-N and chemical oxygen demand (i.e. for V-H SSF hybrid CWs) and total suspended solids and faecal coliforms (i.e. for HRAOPs), and a requirement for substantial land footprint while, HRAOPs required significantly less capital than V-H SSF hybrid CWs for implementation. The latter suggests that HRAOPs could be preferred over V-H SSF hybrid CWs as a technology of choice to increase the capacity of overloaded WSP sewage treatment plants especially where financial resources are limited. Overall, the results of this thesis indicate the potential to use NH4+-N as a design parameter in constructing SSF CWs treating weak strength municipal sewage (i.e. in terms of NH4+-N concentration) and to supplant gravel as the treatment media with industrial waste material like discard coal to achieve wastewater treatment, bio-remediation, and pollution control. The results of this work are discussed in terms of using SSF CWs as a passive and resilient technology for the treatment of domestic sewage in sub-Saharan Africa.
- Full Text:
- Date Issued: 2018
Water quality, biomass and extracellular polymeric substances in an integrated algae pond system
- Authors: Jimoh, Taobat Adekilekun
- Date: 2018
- Subjects: Water -- Purification , Sewage -- Purification -- Anaerobic treatment , Sewage lagoons , Sewage disposal plants , ASPAM model (Acid mine drainage) , Integrated algae pond systems (IAPS)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/57307 , vital:26871
- Description: Integrated algae pond systems (IAPS) combine the use of anaerobic and aerobic bioprocesses to effect wastewater treatment. Although, IAPS as a technology process offers many advantages including efficient and simultaneous N and P removal, no requirement for additional chemicals, O2 generation, CO2 mitigation, and a biomass with potential for valorization, a lack of technological advancement and the need for large land area, has limited the reach of this technology at industrial scale. In mitigation, peroxonation was introduced as a tertiary treatment unit and its effect on COD and TSS of IAPS treated water investigated. An effort was made to characterize the soluble but persistent COD in IAPS treated water and, productivity of the HRAOP mixed liquor was investigated to gain insight into the potential use of this biomass. Results show that peroxone treatment effectively reduced COD, TSS, and nutrient load of IAPS water without any significant impact on land area requirement. Indeed, summary data describing the effect of peroxone on quality of IAPS-treated water confirmed that it complies with the general limit values for either irrigation or discharge into a water resource that is not a listed water resource for volumes up to 2 ML of treated wastewater on any given day. Extraction followed by FT-IR spectroscopy was used to confirm albeit tentatively, the identity of the soluble but persistent COD in IAPS treated water as MaB-floc EPS. Results show that MaB-flocs from HRAOPs are assemblages of microorganisms produced as discrete aggregates as a result of microbial EPS production. A relationship between photosynthesis and EPS production was established by quantification of the EPS following exposure of MaB-flocs to either continuous light or darkness. Several novel strains of bacteria were isolated from HRAOP mixed liquor and 16S ribosomal genomic sequence analysis resulted in the molecular characterization of Planococcus maitriensis strain ECCN 45b. This is the first report of Planococcus maitriensis from a wastewater treatment process. Productivity and change in MaB-flocs concentration, measured as mixed liquor suspended solids (MLSS) between morning and evening were monitored and revealed that MLSS is composed of microalgae and bacteria but not fungi. Concentration varied from 77 mg L-1 in September (winter) to 285 mg L-1 in November (spring); pond productivity increased from 5.8 g m-2 d-1 (winter) to 21.5 g m-2 d-1 (spring); and, irrespective of MLSS concentration in late afternoon, approximately 39% was lost overnight, which presumably occurred due to passive removal by the algae settling pond. The outcomes of this research are discussed in terms of the quality of treated water, and the further development of IAPS as a platform technology for establishing a biorefinery within the wastewater treatment sector.
- Full Text:
- Date Issued: 2018