Effects of annealing on the structural and optical properties of nanostructured TiO2
- Talla, Assane, Urgessa, Zelalem
- Authors: Talla, Assane , Urgessa, Zelalem
- Date: 2023-12
- Subjects: Titanium dioxide , Nanostructured materials , Nanotubes
- Language: English
- Type: Doctorial theses , text
- Identifier: http://hdl.handle.net/10948/62655 , vital:72907
- Description: In this thesis, the structural, morphological and optical properties of titanium dioxide (TiO2) are investigated. Titanium dioxide (TiO2) nanotubes are prepared by anodic oxidation of titanium foil. The as-anodised samples are thermally annealed at various temperatures in nitrogen, air, oxygen and vacuum. The purpose is to study how the annealing conditions affect the properties of the nanostructures, including the anatase to rutile phase transformation. In all annealing atmospheres, except in vacuum, the dominant phase is found to be anatase when annealing is performed up to 600 oC. Above 700 oC the rutile phase becomes dominant. The anatase phase is stable above 600 oC in vacuum and does not evolve significantly up to 900 oC. The morphologies of the tubes tend to deteriorate with increased annealing temperature, in nitrogen, air and oxygen atmospheres, due to sintering effects. However, the integrity of the nanotubes is maintained up to 900 oC in vacuum. The photoluminescence (PL) spectra suggest mainly the presence of oxygen vacancies and self-trapped excitons, with respective emission bands around 2.5 eV and 2.3 eV. The results show that both the annealing temperature and atmosphere strongly influence the crystalline and optical properties of the TiO2 nanotubes. In addition, the phase transformation from anatase to rutile for samples annealed in an oxygen-rich environment is investigated in detail. Complementary structural information obtained from transmission electron microscopy and Raman analysis for oxygen-annealed samples reveals that the nucleation of the rutile phase starts from the titanium substrate and then propagates along the tubes. The results provide suitable annealing conditions to control the phase content and morphology of anodic TiO2 nanotubes. The PL characteristics of bulk crystalline anatase TiO2, namely virgin and hydrogen-annealed at 600 oC for 1 h, are studied. The low temperature PL spectra at 5.5 K shows near band edge (NBE) emissions with two dominant lines ascribed to shallow donor bound exciton and possibly free to bound recombination. The two main transitions are assisted by optical phononmodes. Temperature-dependent PL measurements performed on these anatase crystals reveal that the donor bound exciton is stable below 90 K. Hydrogen trapped in oxygen vacancies is proposed to be the shallow donor. In addition, two activation processes are involved for the thermal quenching of donor bound excitons. The total activation energy is found to correlate well with the localisation energy of the bound exciton. Site-selective PL spectra obtained from anodic TiO2 tubes reveals that the luminescence of the nanostructures depends on the morphology. The result shows unusual near-band edge emission (NBE) for these structures, which is rarely observed in indirect band gap TiO2. , Thesis (PhD) -- Faculty of Science, School of Biomolecular and Chemical Sciences, 2023
- Full Text:
- Date Issued: 2023-12
- Authors: Talla, Assane , Urgessa, Zelalem
- Date: 2023-12
- Subjects: Titanium dioxide , Nanostructured materials , Nanotubes
- Language: English
- Type: Doctorial theses , text
- Identifier: http://hdl.handle.net/10948/62655 , vital:72907
- Description: In this thesis, the structural, morphological and optical properties of titanium dioxide (TiO2) are investigated. Titanium dioxide (TiO2) nanotubes are prepared by anodic oxidation of titanium foil. The as-anodised samples are thermally annealed at various temperatures in nitrogen, air, oxygen and vacuum. The purpose is to study how the annealing conditions affect the properties of the nanostructures, including the anatase to rutile phase transformation. In all annealing atmospheres, except in vacuum, the dominant phase is found to be anatase when annealing is performed up to 600 oC. Above 700 oC the rutile phase becomes dominant. The anatase phase is stable above 600 oC in vacuum and does not evolve significantly up to 900 oC. The morphologies of the tubes tend to deteriorate with increased annealing temperature, in nitrogen, air and oxygen atmospheres, due to sintering effects. However, the integrity of the nanotubes is maintained up to 900 oC in vacuum. The photoluminescence (PL) spectra suggest mainly the presence of oxygen vacancies and self-trapped excitons, with respective emission bands around 2.5 eV and 2.3 eV. The results show that both the annealing temperature and atmosphere strongly influence the crystalline and optical properties of the TiO2 nanotubes. In addition, the phase transformation from anatase to rutile for samples annealed in an oxygen-rich environment is investigated in detail. Complementary structural information obtained from transmission electron microscopy and Raman analysis for oxygen-annealed samples reveals that the nucleation of the rutile phase starts from the titanium substrate and then propagates along the tubes. The results provide suitable annealing conditions to control the phase content and morphology of anodic TiO2 nanotubes. The PL characteristics of bulk crystalline anatase TiO2, namely virgin and hydrogen-annealed at 600 oC for 1 h, are studied. The low temperature PL spectra at 5.5 K shows near band edge (NBE) emissions with two dominant lines ascribed to shallow donor bound exciton and possibly free to bound recombination. The two main transitions are assisted by optical phononmodes. Temperature-dependent PL measurements performed on these anatase crystals reveal that the donor bound exciton is stable below 90 K. Hydrogen trapped in oxygen vacancies is proposed to be the shallow donor. In addition, two activation processes are involved for the thermal quenching of donor bound excitons. The total activation energy is found to correlate well with the localisation energy of the bound exciton. Site-selective PL spectra obtained from anodic TiO2 tubes reveals that the luminescence of the nanostructures depends on the morphology. The result shows unusual near-band edge emission (NBE) for these structures, which is rarely observed in indirect band gap TiO2. , Thesis (PhD) -- Faculty of Science, School of Biomolecular and Chemical Sciences, 2023
- Full Text:
- Date Issued: 2023-12
Development of titanium dioxide for photo-electrochemical hydrogen production
- Authors: Mbulanga, Crispin Munyelele
- Date: 2019
- Subjects: Titanium dioxide , Nanostructured materials Water chemistry Environmental chemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/40735 , vital:36231
- Description: TiO2 is an attractive material for photo electrochemical hydrogen production and in this work the synthesis of this compound by hydrothermal, gel-calcination and one-step templating methods is investigated. Rutile-phase TiO2 rods, which are known to offer direct electrical pathways for photo generated electrons when using TiO2 as a photo anode in a photo-electrochemical hydrogen cell, were prepared on both F:SnO2 (FTO) coated glass and Ti foil substrates. Anatase-phase TiO2 tubes and mixed rutile-anatase-phase TiO2 nanostructured films were developed on FTO-coated glass substrates. Rutile-phase TiO2 rod-like structures, were synthesized hydrothermally at 150 oC for different times (6 – 20 hours) on FTO-coated glass substrate, in an aqueous solution of hydrochloric acid and titanium butoxide. The rod-like structures were found to comprise bundles of crystalline prismatic TiO2 nanorods, each approximately 4 nm in width. Each bundle was tetragonal in shape and highly oriented with respect to the substrate surface. The average diameter of the bundles varied depending on the growth time, and reached a mean diameter of ~175 nm after 20 hours of growth. In terms of Raman scattering, these bundles of nanorods acted as single entities, appearing to act as “larger” crystals to the lattice phonons. Hence, phonon confinement effects could not be observed, because the translational symmetry is preserved at the boundaries between individual rods. Moreover, as the preferential perpendicular orientation of the bundles improved with growth time, an unusual increase in the room and low (77K) temperature Eg/A1g Raman band intensity ratios was observed. The low temperature Raman peak position and peak width data was interpreted as supporting the hypothesis that the bundles of nanorods acting as single entities from the point of view of the lattice phonons. The phonon symmetries and frequencies (in cm-1) of these bundles of rutile-phase TiO2 were found to be consistent with rutile-phase TiO2 phonon symmetries and frequencies. Rutile-phase TiO2 rod-like structures were prepared on Ti foil following a two-step gel-calcination method, which involves a gel-deposition process in 5 M NaOH solution at 76 oC for 24 hours to produce a Na- (and Ti-) based layer of gelatinous material, followed by calcination at 600 oC or 800 oC for 1 hour. It is shown that the use of an alkali-based solution such as NaOH and KOH during gel-deposition, leads to the formation of faceted nanorods of rutile-phase TiO2 upon calcination at high temperature. When a solution that does not contain any alkali element, such as H2O2, was used, the material formed upon calcination at 800 oC were clustered nanoparticles, rather than nanorods. From the experiments it was deduced that the high temperature calcination step converted the Na(or K)-based amorphous gel (formed on the Ti surface during a 24-h soak in NaOH (KOH) solution) into faceted Na-titanate rods, which converted into nanorods of rutile-phase TiO2 when Na(or K) evaporates in the form of an oxide. Anatase-phase TiO2 tube-like structures were produced by a one-step templating solution approach, on FTO-coated glass substrate. ZnO nanorod templates were prepared by chemical bath deposition on FTO-coated glass substrate, and then treated in an aqueous mixture of ammonium hexafluorotitanate and boric acid. To study the effect of the template morphology and deposition processes on the formation of anatase TiO2 tubes, different times (10 – 60 minutes) and concentrations of the precursors are used. Calcination at 550 oC converted the Ti-based material developed on the ZnO rods into TiO2 nanostructures. A 10 minute deposition yielded tubes with dimensions resembling those of the ZnO template. However, the tube walls still contained Zn traces. Based on experimental observations, it was concluded that the production of titanium hydroxide complexes on ZnO surfaces takes place through two competing processes: the development of a Ti-based material and partial dissolution of ZnO along the c-axis. Calcination at 550 oC in air finally yielded anatase TiO2. Mixed rutile-anatase-phase TiO2 nanostructured films on FTO-coated glass substrate were prepared by decorating bundles of crystalline prismatic TiO2 nanorods (prepared hydrothermally) with anatase-phase TiO2 particles, using the same precursors mentioned above. The effect of reaction time and precursor concentrations were investigated. It was found that the precursor concentration ratio and reaction time played key roles in controlling the decoration process. Optimal ratios and decoration times were established based on the density of anatase-phase TiO2 decorating particles on the surface of bundles of rutile-phase TiO2 nanorods. The optical properties of rutile-phase TiO2 rods were investigated. The thickness of the TiO2 layer was calculated from reflectance fringes, and agreed well with the length of rods observed using SEM. The room temperature absorption edge of Eg=2.90 eV extracted from the transmittance spectrum correlated with typical values reported for TiO2. The room temperature absorption edge of the conductive layer of F:SnO2 (Eg=3.56 eV) could also be extracted from the transmittance spectrum. Finally, the absorption of white light by rutile-phase TiO2 rods was confirmed to be enhanced by annealing the rods in either hydrogen or nitrogen at 600 oC. Defects (possibly oxygen vacancies) or disorder in the near surface layers of TiO2 induced during the reduction experiments, created new electronic states in the band gap, as reported in literature.
- Full Text:
- Date Issued: 2019
- Authors: Mbulanga, Crispin Munyelele
- Date: 2019
- Subjects: Titanium dioxide , Nanostructured materials Water chemistry Environmental chemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/40735 , vital:36231
- Description: TiO2 is an attractive material for photo electrochemical hydrogen production and in this work the synthesis of this compound by hydrothermal, gel-calcination and one-step templating methods is investigated. Rutile-phase TiO2 rods, which are known to offer direct electrical pathways for photo generated electrons when using TiO2 as a photo anode in a photo-electrochemical hydrogen cell, were prepared on both F:SnO2 (FTO) coated glass and Ti foil substrates. Anatase-phase TiO2 tubes and mixed rutile-anatase-phase TiO2 nanostructured films were developed on FTO-coated glass substrates. Rutile-phase TiO2 rod-like structures, were synthesized hydrothermally at 150 oC for different times (6 – 20 hours) on FTO-coated glass substrate, in an aqueous solution of hydrochloric acid and titanium butoxide. The rod-like structures were found to comprise bundles of crystalline prismatic TiO2 nanorods, each approximately 4 nm in width. Each bundle was tetragonal in shape and highly oriented with respect to the substrate surface. The average diameter of the bundles varied depending on the growth time, and reached a mean diameter of ~175 nm after 20 hours of growth. In terms of Raman scattering, these bundles of nanorods acted as single entities, appearing to act as “larger” crystals to the lattice phonons. Hence, phonon confinement effects could not be observed, because the translational symmetry is preserved at the boundaries between individual rods. Moreover, as the preferential perpendicular orientation of the bundles improved with growth time, an unusual increase in the room and low (77K) temperature Eg/A1g Raman band intensity ratios was observed. The low temperature Raman peak position and peak width data was interpreted as supporting the hypothesis that the bundles of nanorods acting as single entities from the point of view of the lattice phonons. The phonon symmetries and frequencies (in cm-1) of these bundles of rutile-phase TiO2 were found to be consistent with rutile-phase TiO2 phonon symmetries and frequencies. Rutile-phase TiO2 rod-like structures were prepared on Ti foil following a two-step gel-calcination method, which involves a gel-deposition process in 5 M NaOH solution at 76 oC for 24 hours to produce a Na- (and Ti-) based layer of gelatinous material, followed by calcination at 600 oC or 800 oC for 1 hour. It is shown that the use of an alkali-based solution such as NaOH and KOH during gel-deposition, leads to the formation of faceted nanorods of rutile-phase TiO2 upon calcination at high temperature. When a solution that does not contain any alkali element, such as H2O2, was used, the material formed upon calcination at 800 oC were clustered nanoparticles, rather than nanorods. From the experiments it was deduced that the high temperature calcination step converted the Na(or K)-based amorphous gel (formed on the Ti surface during a 24-h soak in NaOH (KOH) solution) into faceted Na-titanate rods, which converted into nanorods of rutile-phase TiO2 when Na(or K) evaporates in the form of an oxide. Anatase-phase TiO2 tube-like structures were produced by a one-step templating solution approach, on FTO-coated glass substrate. ZnO nanorod templates were prepared by chemical bath deposition on FTO-coated glass substrate, and then treated in an aqueous mixture of ammonium hexafluorotitanate and boric acid. To study the effect of the template morphology and deposition processes on the formation of anatase TiO2 tubes, different times (10 – 60 minutes) and concentrations of the precursors are used. Calcination at 550 oC converted the Ti-based material developed on the ZnO rods into TiO2 nanostructures. A 10 minute deposition yielded tubes with dimensions resembling those of the ZnO template. However, the tube walls still contained Zn traces. Based on experimental observations, it was concluded that the production of titanium hydroxide complexes on ZnO surfaces takes place through two competing processes: the development of a Ti-based material and partial dissolution of ZnO along the c-axis. Calcination at 550 oC in air finally yielded anatase TiO2. Mixed rutile-anatase-phase TiO2 nanostructured films on FTO-coated glass substrate were prepared by decorating bundles of crystalline prismatic TiO2 nanorods (prepared hydrothermally) with anatase-phase TiO2 particles, using the same precursors mentioned above. The effect of reaction time and precursor concentrations were investigated. It was found that the precursor concentration ratio and reaction time played key roles in controlling the decoration process. Optimal ratios and decoration times were established based on the density of anatase-phase TiO2 decorating particles on the surface of bundles of rutile-phase TiO2 nanorods. The optical properties of rutile-phase TiO2 rods were investigated. The thickness of the TiO2 layer was calculated from reflectance fringes, and agreed well with the length of rods observed using SEM. The room temperature absorption edge of Eg=2.90 eV extracted from the transmittance spectrum correlated with typical values reported for TiO2. The room temperature absorption edge of the conductive layer of F:SnO2 (Eg=3.56 eV) could also be extracted from the transmittance spectrum. Finally, the absorption of white light by rutile-phase TiO2 rods was confirmed to be enhanced by annealing the rods in either hydrogen or nitrogen at 600 oC. Defects (possibly oxygen vacancies) or disorder in the near surface layers of TiO2 induced during the reduction experiments, created new electronic states in the band gap, as reported in literature.
- Full Text:
- Date Issued: 2019
Synthesis and characterization of titanium dioxide nanotubes on fluorine-doped tin oxide (FTO) glass substrate using electro-anodization technique
- Zinya, Simcelile https://orcid.org/0000-0001-5864-0957
- Authors: Zinya, Simcelile https://orcid.org/0000-0001-5864-0957
- Date: 2017-12
- Subjects: Titanium dioxide , Nanotubes , Nanostructured materials
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/23979 , vital:62201
- Description: One-dimensional (1-D) titanium dioxide nanotubes (TNTs) have attracted much attention as a promising alternative electrode material for dye sensitized solar cell (DSSC). As compared to the randomly packed and disordered TiO2 nanoparticles (TNPs) network with numerous particle-particle interfaces, TNTs prove to have fascinating features than make them suitable candidates in DSSCs. Well-structured TNTs arrays are of great potential among the various types of 1D TiO2 nano-materials owing to their superior electron transport properties with limited grain boundaries. Vectorial transport of photon generated electrons along the TNTs has been reported to lead to higher charge mobility which is crucial for improvement of DSSC performances. In this work, highly adhesive titanium films were deposited on functional substrates (FS) using radio frequency (RF) sputtering technique at a sputtering output power of 1kW, operating pressure of 1.5 Pa and at a deposition temperature of 200 °C to obtain a thickness of 10 μm under an inert argon atmosphere. The duration period for sputter coating 10 μm thickness of titanium film layer was 122 minutes with sputter rate for titanium target of about 82 nm per minutes. Subsequently, the RF sputtered titanium films were anodized with 0.5 wt. percent ammonium fluoride + 0.35 wt. percent deionised water and 96 wt. percent glycerol electrolyte solution at room temperature at 60 V for 72 hours. The resulting TNTs on functional substrates (TNTs-FS) were subjected to thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C for 3 hours under oxygen atmosphere. The effect of annealing temperature on the morphological, and structural properties have been scrutinized. The as prepared and thermally treated TNTs-FS were characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Confocal Raman Spectroscopy (CRS). SEM and HRTEM techniques were employed to confirm the presence of the TNTs-FS and also to study the structural-morphology of the TNTs as the annealing temperature increases. SEM revealed improvement in morphology with increase in sample annealing temperature, even at high temperatures such as 650 °C with no collapsing and sintering of the TNTs-FS occurring. SEM images revealed TNTs-FS with pore diameter sizes in the range between 85-170 nm. This is in compliance with HRTEM analysis, which revealed smooth and straight tube walls and improved surface morphology with increase in annealing temperature. In addition HRTEM images revealed pore diameter of TNTs-FS in the range between 85-165 nm. Furthermore, HRTEM revealed lattice fringes of 0.351, 0.352 and 0.353 nm between the neighbouring lattice fringes. All corresponding to (101) planes of anatase phase TNTs at different annealing temperatures (350-650 °C). The crystallographic structure of TNTs-FS was characterized by XRD measurements after thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C. The XRD pattern revealed peaks in the wide angle range of 2θ (20° < 2θ > 80°) discovered at 29.43°, 45.10°, 56.52°, 63.5°, 64.92° and 74.81° corresponding to the planes (101), (112), (200), (105), (211) and (204) crystalline structures of the anatase TNTs. The intensity of the peaks increased with increasing annealing temperature. The strong sharp peaks indicate the large quantities and higher degrees of crystallinity of anatase phase of the TNTs. CRS Large Area Scan (LAS) and Depth profiling (DP) were employed to evaluate the crystallinity and phase distribution of TNTs-FS thermally treated at different temperatures. CRS LAS in the XY direction of TNTs-FS revealed the presence of differently crystallized anatase phases of TiO2 with Raman vibrational modes of 159.38 cm-1 (Eg), 208.37 cm-1 (Eg), 399.67 cm-1 (B1g), 514.25 cm-1 (A1g) and 641.58 cm-1 (Eg) for the samples annealed at 350 °C. The effect of annealing temperature on TiO2 phase evolution was meticulously evaluated using CRS for TNTs-FS for the samples annealed at 350 °C, 450 °C, 550 °C and 650 °C. The FWHM was estimated from CRS and decreases with increasing annealing temperature resulting in increasing crystallinity. Increase in anatase FWHM and anatase peak intensity implies higher degree of crystallinity and increasing crystallite sizes were also confirmed by XRD. Growing of titanium dioxide on functional substrates one novel contribution towards the fabrication of efficient electrode materials for solar cell development. Our method of characterizing TNTs-FS from a large area scan along the surface of the samples and depth profiling along the TNTs tube walls using confocal Raman spectroscopy prove to be a pivotal step in the development of efficient photoelectrode materials of the solar devices. , Thesis (MSc) -- Faculty of Science and Agriculture, 2017
- Full Text:
- Date Issued: 2017-12
- Authors: Zinya, Simcelile https://orcid.org/0000-0001-5864-0957
- Date: 2017-12
- Subjects: Titanium dioxide , Nanotubes , Nanostructured materials
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/23979 , vital:62201
- Description: One-dimensional (1-D) titanium dioxide nanotubes (TNTs) have attracted much attention as a promising alternative electrode material for dye sensitized solar cell (DSSC). As compared to the randomly packed and disordered TiO2 nanoparticles (TNPs) network with numerous particle-particle interfaces, TNTs prove to have fascinating features than make them suitable candidates in DSSCs. Well-structured TNTs arrays are of great potential among the various types of 1D TiO2 nano-materials owing to their superior electron transport properties with limited grain boundaries. Vectorial transport of photon generated electrons along the TNTs has been reported to lead to higher charge mobility which is crucial for improvement of DSSC performances. In this work, highly adhesive titanium films were deposited on functional substrates (FS) using radio frequency (RF) sputtering technique at a sputtering output power of 1kW, operating pressure of 1.5 Pa and at a deposition temperature of 200 °C to obtain a thickness of 10 μm under an inert argon atmosphere. The duration period for sputter coating 10 μm thickness of titanium film layer was 122 minutes with sputter rate for titanium target of about 82 nm per minutes. Subsequently, the RF sputtered titanium films were anodized with 0.5 wt. percent ammonium fluoride + 0.35 wt. percent deionised water and 96 wt. percent glycerol electrolyte solution at room temperature at 60 V for 72 hours. The resulting TNTs on functional substrates (TNTs-FS) were subjected to thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C for 3 hours under oxygen atmosphere. The effect of annealing temperature on the morphological, and structural properties have been scrutinized. The as prepared and thermally treated TNTs-FS were characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Confocal Raman Spectroscopy (CRS). SEM and HRTEM techniques were employed to confirm the presence of the TNTs-FS and also to study the structural-morphology of the TNTs as the annealing temperature increases. SEM revealed improvement in morphology with increase in sample annealing temperature, even at high temperatures such as 650 °C with no collapsing and sintering of the TNTs-FS occurring. SEM images revealed TNTs-FS with pore diameter sizes in the range between 85-170 nm. This is in compliance with HRTEM analysis, which revealed smooth and straight tube walls and improved surface morphology with increase in annealing temperature. In addition HRTEM images revealed pore diameter of TNTs-FS in the range between 85-165 nm. Furthermore, HRTEM revealed lattice fringes of 0.351, 0.352 and 0.353 nm between the neighbouring lattice fringes. All corresponding to (101) planes of anatase phase TNTs at different annealing temperatures (350-650 °C). The crystallographic structure of TNTs-FS was characterized by XRD measurements after thermal treatment at 350 °C, 450 °C, 550 °C and 650 °C. The XRD pattern revealed peaks in the wide angle range of 2θ (20° < 2θ > 80°) discovered at 29.43°, 45.10°, 56.52°, 63.5°, 64.92° and 74.81° corresponding to the planes (101), (112), (200), (105), (211) and (204) crystalline structures of the anatase TNTs. The intensity of the peaks increased with increasing annealing temperature. The strong sharp peaks indicate the large quantities and higher degrees of crystallinity of anatase phase of the TNTs. CRS Large Area Scan (LAS) and Depth profiling (DP) were employed to evaluate the crystallinity and phase distribution of TNTs-FS thermally treated at different temperatures. CRS LAS in the XY direction of TNTs-FS revealed the presence of differently crystallized anatase phases of TiO2 with Raman vibrational modes of 159.38 cm-1 (Eg), 208.37 cm-1 (Eg), 399.67 cm-1 (B1g), 514.25 cm-1 (A1g) and 641.58 cm-1 (Eg) for the samples annealed at 350 °C. The effect of annealing temperature on TiO2 phase evolution was meticulously evaluated using CRS for TNTs-FS for the samples annealed at 350 °C, 450 °C, 550 °C and 650 °C. The FWHM was estimated from CRS and decreases with increasing annealing temperature resulting in increasing crystallinity. Increase in anatase FWHM and anatase peak intensity implies higher degree of crystallinity and increasing crystallite sizes were also confirmed by XRD. Growing of titanium dioxide on functional substrates one novel contribution towards the fabrication of efficient electrode materials for solar cell development. Our method of characterizing TNTs-FS from a large area scan along the surface of the samples and depth profiling along the TNTs tube walls using confocal Raman spectroscopy prove to be a pivotal step in the development of efficient photoelectrode materials of the solar devices. , Thesis (MSc) -- Faculty of Science and Agriculture, 2017
- Full Text:
- Date Issued: 2017-12
Development of a visible light active, photo-catalytic and antimicrobial nanocomposite of titanium dioxide and silicon dioxide for water treatment
- Authors: Mungondori, Henry Heroe
- Date: 2012
- Subjects: Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11335 , http://hdl.handle.net/10353/471 , Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Description: The aim of this study was to prepare composite materials based on titanium dioxide (TiO2) and silicon dioxide (SiO2), and to evaluate their photo-catalytic and antimicrobial properties. Carbon and nitrogen doped TiO2nano-particles were prepared via a sol gel synthesis, which is a simple hydrolysis and condensation technique. In situ doping was carried out using glucose and urea as carbon and nitrogen sources respectively. Doping increased the spectral response of titanium dioxide photo-catalyst, allowing it to utilise the visible region which is much wider than the UV region (about 40 % of the solar spectrum), thus making it a more efficient photo-catalyst. The carbon and nitrogen doped TiO2-SiO2nano-particles were immobilized on glass support material to allow for easy separation of the spent photo-catalyst after the photo-degradation process. Tetraethyl orthosilicate (TEOS) was employed as both a binder and precursor for silicon dioxide. A mixture of TiO2 and TEOS in a 1:1 ratio was allowed to polymerize on a glass support which had been treated with hydrofluoric acid to introduce OH groups. The prepared photo-catalytic material was characterized by FT-IR, XRD, DRS, TEM, EDX, and BET analyses. Carbon was found to be more effective as a dopant than nitrogen. It brought about a band gap reduction of 0.30 eV and a BET surface area of 95.4 m2g-1 on the photo-catalyst as compared to a gap reduction of 0.2 eV and surface area of 52.2 m2g-1 for nitrogen doped TiO2. On the other hand, introduction of SiO2 allowed utilization of visible light by the TiO2-SiO2 nano-composite leading to an improved rate of photo-degradation of both methyl orange and phenol red. However, the immobilization of TiO2 on support material made it less effective towards inactivation of E. coli ATCC 25922 bacterial cells when compared to powdered TiO2 which was able to inactivate about 98 % of the bacterial cells within an hour of treatment.
- Full Text:
- Date Issued: 2012
- Authors: Mungondori, Henry Heroe
- Date: 2012
- Subjects: Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Chemistry)
- Identifier: vital:11335 , http://hdl.handle.net/10353/471 , Titanium dioxide , Silica , Catalysis , Nanocomposites (Materials) , Water -- Purification
- Description: The aim of this study was to prepare composite materials based on titanium dioxide (TiO2) and silicon dioxide (SiO2), and to evaluate their photo-catalytic and antimicrobial properties. Carbon and nitrogen doped TiO2nano-particles were prepared via a sol gel synthesis, which is a simple hydrolysis and condensation technique. In situ doping was carried out using glucose and urea as carbon and nitrogen sources respectively. Doping increased the spectral response of titanium dioxide photo-catalyst, allowing it to utilise the visible region which is much wider than the UV region (about 40 % of the solar spectrum), thus making it a more efficient photo-catalyst. The carbon and nitrogen doped TiO2-SiO2nano-particles were immobilized on glass support material to allow for easy separation of the spent photo-catalyst after the photo-degradation process. Tetraethyl orthosilicate (TEOS) was employed as both a binder and precursor for silicon dioxide. A mixture of TiO2 and TEOS in a 1:1 ratio was allowed to polymerize on a glass support which had been treated with hydrofluoric acid to introduce OH groups. The prepared photo-catalytic material was characterized by FT-IR, XRD, DRS, TEM, EDX, and BET analyses. Carbon was found to be more effective as a dopant than nitrogen. It brought about a band gap reduction of 0.30 eV and a BET surface area of 95.4 m2g-1 on the photo-catalyst as compared to a gap reduction of 0.2 eV and surface area of 52.2 m2g-1 for nitrogen doped TiO2. On the other hand, introduction of SiO2 allowed utilization of visible light by the TiO2-SiO2 nano-composite leading to an improved rate of photo-degradation of both methyl orange and phenol red. However, the immobilization of TiO2 on support material made it less effective towards inactivation of E. coli ATCC 25922 bacterial cells when compared to powdered TiO2 which was able to inactivate about 98 % of the bacterial cells within an hour of treatment.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »