Analyzing communication flow and process placement in Linda programs on transputers
- De-Heer-Menlah, Frederick Kofi
- Authors: De-Heer-Menlah, Frederick Kofi
- Date: 1992 , 2012-11-28
- Subjects: LINDA (Computer system) , Transputers , Parallel programming (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4675 , http://hdl.handle.net/10962/d1006698 , LINDA (Computer system) , Transputers , Parallel programming (Computer science)
- Description: With the evolution of parallel and distributed systems, users from diverse disciplines have looked to these systems as a solution to their ever increasing needs for computer processing resources. Because parallel processing systems currently require a high level of expertise to program, many researchers are investing effort into developing programming approaches which hide some of the difficulties of parallel programming from users. Linda, is one such parallel paradigm, which is intuitive to use, and which provides a high level decoupling between distributable components of parallel programs. In Linda, efficiency becomes a concern of the implementation rather than of the programmer. There is a substantial overhead in implementing Linda, an inherently shared memory model on a distributed system. This thesis describes the compile-time analysis of tuple space interactions which reduce the run-time matching costs, and permits the distributon of the tuple space data. A language independent module which partitions the tuple space data and suggests appropriate storage schemes for the partitions so as to optimise Linda operations is presented. The thesis also discusses hiding the network topology from the user by automatically allocating Linda processes and tuple space partitons to nodes in the network of transputers. This is done by introducing a fast placement algorithm developed for Linda. , KMBT_223
- Full Text:
- Authors: De-Heer-Menlah, Frederick Kofi
- Date: 1992 , 2012-11-28
- Subjects: LINDA (Computer system) , Transputers , Parallel programming (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4675 , http://hdl.handle.net/10962/d1006698 , LINDA (Computer system) , Transputers , Parallel programming (Computer science)
- Description: With the evolution of parallel and distributed systems, users from diverse disciplines have looked to these systems as a solution to their ever increasing needs for computer processing resources. Because parallel processing systems currently require a high level of expertise to program, many researchers are investing effort into developing programming approaches which hide some of the difficulties of parallel programming from users. Linda, is one such parallel paradigm, which is intuitive to use, and which provides a high level decoupling between distributable components of parallel programs. In Linda, efficiency becomes a concern of the implementation rather than of the programmer. There is a substantial overhead in implementing Linda, an inherently shared memory model on a distributed system. This thesis describes the compile-time analysis of tuple space interactions which reduce the run-time matching costs, and permits the distributon of the tuple space data. A language independent module which partitions the tuple space data and suggests appropriate storage schemes for the partitions so as to optimise Linda operations is presented. The thesis also discusses hiding the network topology from the user by automatically allocating Linda processes and tuple space partitons to nodes in the network of transputers. This is done by introducing a fast placement algorithm developed for Linda. , KMBT_223
- Full Text:
Towards a portable occam
- Authors: Hill, David Timothy
- Date: 1988 , 2013-03-07
- Subjects: occam (Computer program language) , Transputers , Parallel programming (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4587 , http://hdl.handle.net/10962/d1004749 , occam (Computer program language) , Transputers , Parallel programming (Computer science)
- Description: Occam is designed for concurrent programming on a network of transputers. AIlocation and partitioning of the program is specified within the source code, binding the program to a specific network. An altemative approach is proposed which completely separates the source code from hardware considerations. Static allocation is performed as a separate phase and should, ideally, be automatic but at present is manual. Complete hardware abstraction requires that non-local, shared communication be provided for, introducing an efficiency overhead which can be minimised by the allocation. The proposal was implemented on a network of IBM PCs, modelled on a transputer network, and implementation issues are discussed
- Full Text:
- Authors: Hill, David Timothy
- Date: 1988 , 2013-03-07
- Subjects: occam (Computer program language) , Transputers , Parallel programming (Computer science)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4587 , http://hdl.handle.net/10962/d1004749 , occam (Computer program language) , Transputers , Parallel programming (Computer science)
- Description: Occam is designed for concurrent programming on a network of transputers. AIlocation and partitioning of the program is specified within the source code, binding the program to a specific network. An altemative approach is proposed which completely separates the source code from hardware considerations. Static allocation is performed as a separate phase and should, ideally, be automatic but at present is manual. Complete hardware abstraction requires that non-local, shared communication be provided for, introducing an efficiency overhead which can be minimised by the allocation. The proposal was implemented on a network of IBM PCs, modelled on a transputer network, and implementation issues are discussed
- Full Text:
- «
- ‹
- 1
- ›
- »