Design of pH Sensitive Electrochemical Sensor for Catecholamine Neurotransmitters Detection and the Screening Off of Ascorbic Acid
- Tshenkeng, Keamogetse Tebogo Charlotte
- Authors: Tshenkeng, Keamogetse Tebogo Charlotte
- Date: 2021-10-29
- Subjects: Catecholamines , Electrochemical sensors , Neurotransmitters , Vitamin C , Cobalt , Phthalocyanines , Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc)
- Language: English
- Type: thesis , text
- Identifier: http://hdl.handle.net/10962/176921 , vital:42772
- Description: This study presents the synthesis of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) through the cyclotetramerization of 4-(3-carboxyphe-noxy)phthalonitrile and its full characterization using Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis and mass spectrometry. The CoTCPhOPc was then immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA using amide coupling reaction through a reaction with NHS and DCC to obtain Au-PEA-CoTCPhOPc. This yielded pH sensitive thin films due to the terminal carboxylic acid (–COOH) functional groups. Electrochemical and surface characterization was conducted to confirm the modification of the bare Au with PEA thin film (Au-PEA) and amide coupling of CoTCPhOPc (Au-PEA-CoTCPhOPc). The Au-PEA-CoTCPhOPc electrode was shown to possess pH selective properties towards negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. Au-PEA-CoTCPhOPc electrode surface enabled the detection of catecholamine neurotransmitters (dopamine, norepinephrine and epinephrine) and the screening off of ascorbic acid by means of pH sensitive functional groups. Bare Au and Au-PEA electrodes exhibited electro-oxidation and electroreduction of catecholamine neuro-transmitters and ascorbic acid at higher potentials compared to Au-PEA-CoTCPhOPc. There was no electro-oxidation or electroreduction of ascorbic acid at Au-PEA-CoTCPhOPc. For Au-PEA-CoTCPhOPc, excellent electrocatalytic oxidation with the limit of detection (LoD) determined using 3σ was found to be 1.32 (0.95), 2.11 (1.78) and 3.08 μM for electro-oxidation and electroreduction (in brackets) of dopamine, norepinephrine and epinephrine respectively. The limit of quantification (LoQ) was determined using 10σ and found to be 4.41 (3.17), 7.02 (5.93) and 10.3 μM electro-oxidation and electroreduction (in brackets) for dopamine, norepinephrine and epinephrine respectively. The Au-PEA-CoTCPhOPc thin film was shown to screen off ascorbic acid as no electrocatalytic oxidation was observed for up to 100.0 μM concentration. , Thesis (MSc) -- Faculty of Science, Department of Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Tshenkeng, Keamogetse Tebogo Charlotte
- Date: 2021-10-29
- Subjects: Catecholamines , Electrochemical sensors , Neurotransmitters , Vitamin C , Cobalt , Phthalocyanines , Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc)
- Language: English
- Type: thesis , text
- Identifier: http://hdl.handle.net/10962/176921 , vital:42772
- Description: This study presents the synthesis of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) through the cyclotetramerization of 4-(3-carboxyphe-noxy)phthalonitrile and its full characterization using Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis and mass spectrometry. The CoTCPhOPc was then immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA using amide coupling reaction through a reaction with NHS and DCC to obtain Au-PEA-CoTCPhOPc. This yielded pH sensitive thin films due to the terminal carboxylic acid (–COOH) functional groups. Electrochemical and surface characterization was conducted to confirm the modification of the bare Au with PEA thin film (Au-PEA) and amide coupling of CoTCPhOPc (Au-PEA-CoTCPhOPc). The Au-PEA-CoTCPhOPc electrode was shown to possess pH selective properties towards negatively charged [Fe(CN)6]3-/4- and positively charged [Ru(NH3)6]2+/3+ redox probes. Au-PEA-CoTCPhOPc electrode surface enabled the detection of catecholamine neurotransmitters (dopamine, norepinephrine and epinephrine) and the screening off of ascorbic acid by means of pH sensitive functional groups. Bare Au and Au-PEA electrodes exhibited electro-oxidation and electroreduction of catecholamine neuro-transmitters and ascorbic acid at higher potentials compared to Au-PEA-CoTCPhOPc. There was no electro-oxidation or electroreduction of ascorbic acid at Au-PEA-CoTCPhOPc. For Au-PEA-CoTCPhOPc, excellent electrocatalytic oxidation with the limit of detection (LoD) determined using 3σ was found to be 1.32 (0.95), 2.11 (1.78) and 3.08 μM for electro-oxidation and electroreduction (in brackets) of dopamine, norepinephrine and epinephrine respectively. The limit of quantification (LoQ) was determined using 10σ and found to be 4.41 (3.17), 7.02 (5.93) and 10.3 μM electro-oxidation and electroreduction (in brackets) for dopamine, norepinephrine and epinephrine respectively. The Au-PEA-CoTCPhOPc thin film was shown to screen off ascorbic acid as no electrocatalytic oxidation was observed for up to 100.0 μM concentration. , Thesis (MSc) -- Faculty of Science, Department of Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
Electrospun fibre based colorimetric probes for biological molecules
- Authors: Mudabuka, Boitumelo
- Date: 2014
- Subjects: Nanofibers , Vitamin C , Dopamine
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4535 , http://hdl.handle.net/10962/d1016354
- Description: The thesis reports the use of electrospun nanofibres as a platform for the development of colorimetric probes. Three colorimetric probes in the form of electrospun nanofibre test strips were developed for the selective detection of ascorbic acid and dopamine because they are crucial biomolecules for physiological processes in human metabolism and usually coexist in biological samples. The simultaneous detection of the biomolecules is very important as their abnormal concentration levels would lead to diseases such as Parkinson's and schizophrenia. Different methods of incorporating detector agents into the nanofibre were exploited for the detection of the biomolecules. The methods included physical incorporation of nanoparticles, covalent bonding of ligand/dyes through surface modification of the fibres. The first colorimetric test strip for ascorbic acid was based on copper-gold alloy nanoparticles prepared in-situ and hosted in nylon6. The test strip showed selectivity in detecting ascorbic acid in the pH range 2 – 7. The suitability of fibres in hosting copper-gold alloy nanoparticles for the colorimetric detection of ascorbic acid was investigated using nylon6, poly(vinyl benzyl chloride)-styrene and cellulose acetate based test strips. All the test strips exhibited leaching and the nylon6 based test strip was found to be thermally stable up to 60 ˚C. The colorimetric performance of the test strips was maintained and neither was colour decay exhibited after 10 months of storage in a shelf. The test strip achieved an eye-ball limit of detection of 1.76 x10-2 mg L-1 and its suitability was demonstrated by the determination of ascorbic acid in fruit juices, urine, serum, and vitamin C tablets. The second colorimetric test strip for ascorbic acid and dopamine employed prussian blue synthesised in-situ in nylon6. Ascorbic acid turned the deep blue test strip to light blue at pH 3, and a faded navy blue colour at a pH range of 6 - 7 while dopamine changed the strip to purple at the same pH range. The versatility of the test strip was demonstrated by detecting ascorbic acid in commercial fruit juices as well as by detecting ascorbic acid as well as dopamine in fortified urine. The eye-ball detection limit of the Prussian blue test strip for ascorbic acid and dopamine was 17.6 mg L-1 and 18.9 mg L-1, respectively. The third method involved a covalent approach, where poly(vinylbenzyl chloride) nanofibers were post functionalised with 2-(2′-pyridyl)-imidazole and iron(III) for the selective detection of ascorbic acid and dopamine. The eye-ball detection limit for ascorbic acid and dopamine was 17.6 mg L-1 and 18.9 mg L-1, respectively. The test strip was selective for dopamine, but the detection of ascorbic acid suffered from interference by glutathione. The application of the test strips was nevertheless demonstrated by the detection of ascorbic acid in fruit juices and dopamine in fortified urine. The developed test strips employing the three approaches were applied without sample pre-treatment and use of supporting equipment.
- Full Text:
- Date Issued: 2014
- Authors: Mudabuka, Boitumelo
- Date: 2014
- Subjects: Nanofibers , Vitamin C , Dopamine
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4535 , http://hdl.handle.net/10962/d1016354
- Description: The thesis reports the use of electrospun nanofibres as a platform for the development of colorimetric probes. Three colorimetric probes in the form of electrospun nanofibre test strips were developed for the selective detection of ascorbic acid and dopamine because they are crucial biomolecules for physiological processes in human metabolism and usually coexist in biological samples. The simultaneous detection of the biomolecules is very important as their abnormal concentration levels would lead to diseases such as Parkinson's and schizophrenia. Different methods of incorporating detector agents into the nanofibre were exploited for the detection of the biomolecules. The methods included physical incorporation of nanoparticles, covalent bonding of ligand/dyes through surface modification of the fibres. The first colorimetric test strip for ascorbic acid was based on copper-gold alloy nanoparticles prepared in-situ and hosted in nylon6. The test strip showed selectivity in detecting ascorbic acid in the pH range 2 – 7. The suitability of fibres in hosting copper-gold alloy nanoparticles for the colorimetric detection of ascorbic acid was investigated using nylon6, poly(vinyl benzyl chloride)-styrene and cellulose acetate based test strips. All the test strips exhibited leaching and the nylon6 based test strip was found to be thermally stable up to 60 ˚C. The colorimetric performance of the test strips was maintained and neither was colour decay exhibited after 10 months of storage in a shelf. The test strip achieved an eye-ball limit of detection of 1.76 x10-2 mg L-1 and its suitability was demonstrated by the determination of ascorbic acid in fruit juices, urine, serum, and vitamin C tablets. The second colorimetric test strip for ascorbic acid and dopamine employed prussian blue synthesised in-situ in nylon6. Ascorbic acid turned the deep blue test strip to light blue at pH 3, and a faded navy blue colour at a pH range of 6 - 7 while dopamine changed the strip to purple at the same pH range. The versatility of the test strip was demonstrated by detecting ascorbic acid in commercial fruit juices as well as by detecting ascorbic acid as well as dopamine in fortified urine. The eye-ball detection limit of the Prussian blue test strip for ascorbic acid and dopamine was 17.6 mg L-1 and 18.9 mg L-1, respectively. The third method involved a covalent approach, where poly(vinylbenzyl chloride) nanofibers were post functionalised with 2-(2′-pyridyl)-imidazole and iron(III) for the selective detection of ascorbic acid and dopamine. The eye-ball detection limit for ascorbic acid and dopamine was 17.6 mg L-1 and 18.9 mg L-1, respectively. The test strip was selective for dopamine, but the detection of ascorbic acid suffered from interference by glutathione. The application of the test strips was nevertheless demonstrated by the detection of ascorbic acid in fruit juices and dopamine in fortified urine. The developed test strips employing the three approaches were applied without sample pre-treatment and use of supporting equipment.
- Full Text:
- Date Issued: 2014
The effect of combined vitamin E succinate and ascorbic acid supplementation on growth and cyclooxygenase expression in murine melanoma (BL6) cells
- Authors: Van Rooyen, Megan Lynne
- Date: 1999
- Subjects: Vitamin E , Vitamin C , Melanoma
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3982 , http://hdl.handle.net/10962/d1004041 , Vitamin E , Vitamin C , Melanoma
- Description: This thesis examines the effect of combined vitamin E succinate and Asc supplementation on the in vitro growth of a non-malignant monkey kidney (LLCMK) and a malignant melanoma (BL6) cell line, with nutritional concentration ranges of 5-20µg/ml and 25-50µg/ml respectively. Vitamin E and C are thought to interact synergistically to inhibit tumour cell growth by virtue of their antioxidant properties, whereby they quench free radicals and terminate lipid peroxidation. Furthermore vitamin E and C are thought to modulate the biosynthetic pathways in arachidonic acid metabolism at a number of different points. This may also offer a means of regulating tumour cell growth. It is well documented that vitamin E and C are distributed in the lipid and aqueous phases in the cell respectively. However, the cells need to obtain the vitamins from the environment in which they are found in order to exert a growth inhibitory effect. Supplementation of combined vitamin E succinate and Asc on BL6 and LLCMK cells resulted in a significant increase in LLCMK cell growth, and a significant decrease in cell growth was observed in BL6 cells. Vitamin E succinate in its esterified form cannot function as an antioxidant and requires the cleavage of the succinate to become an active antioxidant. The metabolism of vitamin E succinate to form free vitamin E in LLCMK and BL6 cells resulted in the cleavage of the succinate group from the vitamin E molecule in BL6 cells only, thus suggesting that an esterase may be present in BL6 cells. This would allow for a synergistic interaction between the two vitamins. The arachidonic acid cascade generates a family of bioactive lipids that modulate diverse physiological and pathological responses including tumour growth and promotion. The enzyme prostaglandin endoperoxide synthase (PGHS) or cyclooxygenase (Cox) is the key enzyme in the biosynthetic pathway leading to the formation of prostaglandins. Two enzyme isoforms of Cox have been identified, Cox 1 and Cox 2. Supplementation with vitamin E succinate and Asc at a combination 20:25µg/ml respectively resulted in a trend of increasing Cox activity over 12 hours suggesting that vitamin E and Asc have a stimulatory effect on Cox activity in BL6 cells. The inhibitors of Cox 2, dexamethasone, showed a decreasing trend in Cox activity at the 20:25µg/ml combination, while cycloheximide showed an initial stimulatory effect and then a gradual decrease in Cox activity. The elimination of the Cox activity by dexamethasone suggests that transcriptional regulation may be occurring in BL6 cells. We examined by Northern blot analysis whether combined supplementation of vitamin E succinate and Asc caused an elevation of Cox 2 RNA expression in BL6 cells. An inducible effect of Cox 2 was observed after 2 hours of supplementation with a combination of vitamin E succinate and Asc in BL6 cells, however the results are inconclusive and further studies are required to substantiate this finding.
- Full Text:
- Date Issued: 1999
- Authors: Van Rooyen, Megan Lynne
- Date: 1999
- Subjects: Vitamin E , Vitamin C , Melanoma
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3982 , http://hdl.handle.net/10962/d1004041 , Vitamin E , Vitamin C , Melanoma
- Description: This thesis examines the effect of combined vitamin E succinate and Asc supplementation on the in vitro growth of a non-malignant monkey kidney (LLCMK) and a malignant melanoma (BL6) cell line, with nutritional concentration ranges of 5-20µg/ml and 25-50µg/ml respectively. Vitamin E and C are thought to interact synergistically to inhibit tumour cell growth by virtue of their antioxidant properties, whereby they quench free radicals and terminate lipid peroxidation. Furthermore vitamin E and C are thought to modulate the biosynthetic pathways in arachidonic acid metabolism at a number of different points. This may also offer a means of regulating tumour cell growth. It is well documented that vitamin E and C are distributed in the lipid and aqueous phases in the cell respectively. However, the cells need to obtain the vitamins from the environment in which they are found in order to exert a growth inhibitory effect. Supplementation of combined vitamin E succinate and Asc on BL6 and LLCMK cells resulted in a significant increase in LLCMK cell growth, and a significant decrease in cell growth was observed in BL6 cells. Vitamin E succinate in its esterified form cannot function as an antioxidant and requires the cleavage of the succinate to become an active antioxidant. The metabolism of vitamin E succinate to form free vitamin E in LLCMK and BL6 cells resulted in the cleavage of the succinate group from the vitamin E molecule in BL6 cells only, thus suggesting that an esterase may be present in BL6 cells. This would allow for a synergistic interaction between the two vitamins. The arachidonic acid cascade generates a family of bioactive lipids that modulate diverse physiological and pathological responses including tumour growth and promotion. The enzyme prostaglandin endoperoxide synthase (PGHS) or cyclooxygenase (Cox) is the key enzyme in the biosynthetic pathway leading to the formation of prostaglandins. Two enzyme isoforms of Cox have been identified, Cox 1 and Cox 2. Supplementation with vitamin E succinate and Asc at a combination 20:25µg/ml respectively resulted in a trend of increasing Cox activity over 12 hours suggesting that vitamin E and Asc have a stimulatory effect on Cox activity in BL6 cells. The inhibitors of Cox 2, dexamethasone, showed a decreasing trend in Cox activity at the 20:25µg/ml combination, while cycloheximide showed an initial stimulatory effect and then a gradual decrease in Cox activity. The elimination of the Cox activity by dexamethasone suggests that transcriptional regulation may be occurring in BL6 cells. We examined by Northern blot analysis whether combined supplementation of vitamin E succinate and Asc caused an elevation of Cox 2 RNA expression in BL6 cells. An inducible effect of Cox 2 was observed after 2 hours of supplementation with a combination of vitamin E succinate and Asc in BL6 cells, however the results are inconclusive and further studies are required to substantiate this finding.
- Full Text:
- Date Issued: 1999
- «
- ‹
- 1
- ›
- »