An erosion and sediment delivery model for semi-arid catchments
- Authors: Bryson, Louise Kay
- Date: 2016
- Subjects: Sedimentation and deposition , Erosion , Watershed management -- South Africa , Water-supply -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:6056 , http://hdl.handle.net/10962/d1020331
- Description: Sedimentation has become a significant environmental threat in South Africa as it intensifies water management problems in the water-scarce semi-arid regions of the country. As South Africa already allocates 98% of available water, the loss of storage capacity in reservoirs and degraded water quality has meant that a reliable water supply is compromised. The overall aim of this thesis was to develop a catchment scale model that represents the sediment dynamics of semi-arid regions of South Africa as a simple and practically applicable tool for water resource managers. Development of a conceptual framework for the model relied on an understanding of both the sediment dynamics of South African catchments and applicable modelling techniques. Scale was an issue in both cases as most of our understanding of the physical processes of runoff generation and sediment transport has been derived from plot scale studies. By identifying defining properties of semi-arid catchments it was possible to consider how temporal and spatial properties at higher levels emerged from properties at lower levels. These properties were effectively represented by using the Pitman rainfall-runoff model disaggregated to a daily timescale, the Modified Universal Soil Loss Equation (MUSLE) model incorporating probability function theory and through the representation of sediment storages across a semi-distributed catchment. The model was tested on two small and one large study catchment in the Karoo, South Africa, with limited observed data. Limitations to the model were found to be the large parameter data set and the dominance of structural constraints with an increase in catchment size. The next steps in model development will require a reduction of the parameter data set and an inclusion of an in-stream component for sub-catchments at a larger spatial scale. The model is applicable in areas such as South Africa where water resource managers need a simple model at the catchment scale in order to make decisions. This type of model provides a simple representation of the stochastic nature of erosion and sediment delivery over large spatial and temporal scales.
- Full Text:
- Authors: Bryson, Louise Kay
- Date: 2016
- Subjects: Sedimentation and deposition , Erosion , Watershed management -- South Africa , Water-supply -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:6056 , http://hdl.handle.net/10962/d1020331
- Description: Sedimentation has become a significant environmental threat in South Africa as it intensifies water management problems in the water-scarce semi-arid regions of the country. As South Africa already allocates 98% of available water, the loss of storage capacity in reservoirs and degraded water quality has meant that a reliable water supply is compromised. The overall aim of this thesis was to develop a catchment scale model that represents the sediment dynamics of semi-arid regions of South Africa as a simple and practically applicable tool for water resource managers. Development of a conceptual framework for the model relied on an understanding of both the sediment dynamics of South African catchments and applicable modelling techniques. Scale was an issue in both cases as most of our understanding of the physical processes of runoff generation and sediment transport has been derived from plot scale studies. By identifying defining properties of semi-arid catchments it was possible to consider how temporal and spatial properties at higher levels emerged from properties at lower levels. These properties were effectively represented by using the Pitman rainfall-runoff model disaggregated to a daily timescale, the Modified Universal Soil Loss Equation (MUSLE) model incorporating probability function theory and through the representation of sediment storages across a semi-distributed catchment. The model was tested on two small and one large study catchment in the Karoo, South Africa, with limited observed data. Limitations to the model were found to be the large parameter data set and the dominance of structural constraints with an increase in catchment size. The next steps in model development will require a reduction of the parameter data set and an inclusion of an in-stream component for sub-catchments at a larger spatial scale. The model is applicable in areas such as South Africa where water resource managers need a simple model at the catchment scale in order to make decisions. This type of model provides a simple representation of the stochastic nature of erosion and sediment delivery over large spatial and temporal scales.
- Full Text:
The role of acute toxicity data for South African freshwater macroinvertebrates in the derivation of water quality guidelines for salinity
- Authors: Browne, Samantha
- Date: 2005
- Subjects: Water-supply -- South Africa , Water quality management -- South Africa , Aquatic ecology -- South Africa , Ecosystem management -- South Africa , Freshwater invertebrates -- South Africa -- Ecology , Water -- Toxicology -- South Africa , Water quality biological assessment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4742 , http://hdl.handle.net/10962/d1006173 , Water-supply -- South Africa , Water quality management -- South Africa , Aquatic ecology -- South Africa , Ecosystem management -- South Africa , Freshwater invertebrates -- South Africa -- Ecology , Water -- Toxicology -- South Africa , Water quality biological assessment
- Description: Water resources are under ever-increasing pressure to meet the demands of various water users both nationally and internationally. The process of anthropogenically-induced salinisation serves to exacerbate this pressure by limiting the quantity and quality of water available for future use. Water quality guidelines provide the numerical goals which water resource managers can use to adequately manage and protect aquatic ecosystems. Various methods which have been developed and used internationally to derive such guidelines are discussed. Acute toxicity tests were conducted using two inorganic salts, NaCl and Na₂SO₄. Field collected, indigenous, freshwater macroinvertebrates were used as tests organisms. Data generated from these tests contributed to the expansion of the currently limited toxicological database of response data for indigenous organisms and the suitability of using such organisms for future testing was discussed. Salt sensitivities of indigenous freshwater invertebrates were compared those of species sourced from an international toxicological database and were found to have similar ranges of tolerances to NaCl and Na₂SO₄. Species sensitivity distributions (SSDs), a method of data extrapolation, were derived using different types of toxicological data, and hence different guideline values or protective concentrations were derived. These concentrations were equated to boundary values for South Africa’s ecological Reserve categories, which are used to describe degrees of health for aquatic ecosystems. Provisional results suggest that using only acute toxicity data in guideline derivation provides ecosystem protection that is under-protective. Chronic toxicity data, which include endpoints other than mortality, provide the most realistic environmental protection but lack data confidence due to small sample sizes (acute tests are more readily conducted than chronic tests). The potential contribution of sub-chronic data to guideline derivation is highlighted as these data are more readily extrapolated to chronic endpoints than acute data and sub-chronic tests are not as complex and demanding to conduct as chronic tests.
- Full Text:
- Authors: Browne, Samantha
- Date: 2005
- Subjects: Water-supply -- South Africa , Water quality management -- South Africa , Aquatic ecology -- South Africa , Ecosystem management -- South Africa , Freshwater invertebrates -- South Africa -- Ecology , Water -- Toxicology -- South Africa , Water quality biological assessment
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4742 , http://hdl.handle.net/10962/d1006173 , Water-supply -- South Africa , Water quality management -- South Africa , Aquatic ecology -- South Africa , Ecosystem management -- South Africa , Freshwater invertebrates -- South Africa -- Ecology , Water -- Toxicology -- South Africa , Water quality biological assessment
- Description: Water resources are under ever-increasing pressure to meet the demands of various water users both nationally and internationally. The process of anthropogenically-induced salinisation serves to exacerbate this pressure by limiting the quantity and quality of water available for future use. Water quality guidelines provide the numerical goals which water resource managers can use to adequately manage and protect aquatic ecosystems. Various methods which have been developed and used internationally to derive such guidelines are discussed. Acute toxicity tests were conducted using two inorganic salts, NaCl and Na₂SO₄. Field collected, indigenous, freshwater macroinvertebrates were used as tests organisms. Data generated from these tests contributed to the expansion of the currently limited toxicological database of response data for indigenous organisms and the suitability of using such organisms for future testing was discussed. Salt sensitivities of indigenous freshwater invertebrates were compared those of species sourced from an international toxicological database and were found to have similar ranges of tolerances to NaCl and Na₂SO₄. Species sensitivity distributions (SSDs), a method of data extrapolation, were derived using different types of toxicological data, and hence different guideline values or protective concentrations were derived. These concentrations were equated to boundary values for South Africa’s ecological Reserve categories, which are used to describe degrees of health for aquatic ecosystems. Provisional results suggest that using only acute toxicity data in guideline derivation provides ecosystem protection that is under-protective. Chronic toxicity data, which include endpoints other than mortality, provide the most realistic environmental protection but lack data confidence due to small sample sizes (acute tests are more readily conducted than chronic tests). The potential contribution of sub-chronic data to guideline derivation is highlighted as these data are more readily extrapolated to chronic endpoints than acute data and sub-chronic tests are not as complex and demanding to conduct as chronic tests.
- Full Text:
An economic analysis of eradicating alien vegetation as an alternative to conventional water supply schemes: a case study of the Krom and Kouga
- Authors: Carpenter, Robert Charles
- Date: 1999
- Subjects: Alien plants -- South Africa , Water-supply -- South Africa , Kouga River (South Africa)
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:1000 , http://hdl.handle.net/10962/d1002735 , Alien plants -- South Africa , Water-supply -- South Africa , Kouga River (South Africa)
- Description: South Africa is classified as an arid to semi-arid region and water scarcity in South Africa has been identified as a key factor limiting socioeconomic development in the next century. In the Algoa region, the total urban plus agricultural water demand is expected to exceed the supply by the year 2005. The Kouga Working for Water Project aims to increase the base flow to the existing dams which supply the Port Elizabeth metropolitan area through the eradication of invasive alien trees in the riparian areas of the Krom and Kouga catchments. This thesis analyses the economic efficiency of optimal catchment management as a water supply scheme. A cost-benefit analysis is conducted for the Kouga eradication programme, and its desirability is evaluated in terms of the net present value (NPV) and the internal rate of return (IRR) criteria. In order to compare the cost-e~i.ciency of the eradication programme to alternative water supply augmentation schemes the Unit Reference Value (URV) is calculated for the project. The NPV for the project is calculated using a discount rate of 7% and amounts to nearly R24 million. This positive NPV indicates that the project is economically desirable in that it results in the improvement of human welfare. The IRR decision rule supports this finding. The URV of the eradication scheme is found to be competitive to that generated by more conventional schemes. Considered in the evaluation of the project are a host of environmental benefits that accompany the eradication of alien vegetation. This is in contrast to alternative schemes which result in several detrimental impacts to the environment. The economic analysis concludes that the eradication of alien vegetation is an efficient and desirable alternative water supply augmentation scheme. The conclusions drawn from the analysis of the eradication programme in this catchment area can be extended to other catchment areas, with the aim of promoting the most efficient supply of water.
- Full Text:
- Authors: Carpenter, Robert Charles
- Date: 1999
- Subjects: Alien plants -- South Africa , Water-supply -- South Africa , Kouga River (South Africa)
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:1000 , http://hdl.handle.net/10962/d1002735 , Alien plants -- South Africa , Water-supply -- South Africa , Kouga River (South Africa)
- Description: South Africa is classified as an arid to semi-arid region and water scarcity in South Africa has been identified as a key factor limiting socioeconomic development in the next century. In the Algoa region, the total urban plus agricultural water demand is expected to exceed the supply by the year 2005. The Kouga Working for Water Project aims to increase the base flow to the existing dams which supply the Port Elizabeth metropolitan area through the eradication of invasive alien trees in the riparian areas of the Krom and Kouga catchments. This thesis analyses the economic efficiency of optimal catchment management as a water supply scheme. A cost-benefit analysis is conducted for the Kouga eradication programme, and its desirability is evaluated in terms of the net present value (NPV) and the internal rate of return (IRR) criteria. In order to compare the cost-e~i.ciency of the eradication programme to alternative water supply augmentation schemes the Unit Reference Value (URV) is calculated for the project. The NPV for the project is calculated using a discount rate of 7% and amounts to nearly R24 million. This positive NPV indicates that the project is economically desirable in that it results in the improvement of human welfare. The IRR decision rule supports this finding. The URV of the eradication scheme is found to be competitive to that generated by more conventional schemes. Considered in the evaluation of the project are a host of environmental benefits that accompany the eradication of alien vegetation. This is in contrast to alternative schemes which result in several detrimental impacts to the environment. The economic analysis concludes that the eradication of alien vegetation is an efficient and desirable alternative water supply augmentation scheme. The conclusions drawn from the analysis of the eradication programme in this catchment area can be extended to other catchment areas, with the aim of promoting the most efficient supply of water.
- Full Text:
- «
- ‹
- 1
- ›
- »