Interactions between three biological control agents of water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae) in South Africa
- Authors: Petela, Nomvume
- Date: 2018
- Subjects: Water hyacinth -- South Africa , Water hyacinth -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Curculionidae , Delphacidae , Miridae , Neochetina eichhorniae Warner , Megamelus scutellaris Berg , Eccritotarsus eichhorniae Henry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60676 , vital:27814
- Description: Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa.
- Full Text:
- Date Issued: 2018
- Authors: Petela, Nomvume
- Date: 2018
- Subjects: Water hyacinth -- South Africa , Water hyacinth -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Curculionidae , Delphacidae , Miridae , Neochetina eichhorniae Warner , Megamelus scutellaris Berg , Eccritotarsus eichhorniae Henry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60676 , vital:27814
- Description: Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa.
- Full Text:
- Date Issued: 2018
Investigating thermal physiology as a tool to improve the release efficacy of insect biological control agents
- Authors: Griffith, Tamzin Camilla
- Date: 2018
- Subjects: Aquatic weeds -- Biological control , Water hyacinth -- Biological control , Insects -- Physiology , Miridae -- Effect of low temperatures on , Cold adaptation , Insects as biological pest control agents , Eccritotarsus catarinensis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63301 , vital:28391
- Description: Biological control is commonly used for the control of invasive aquatic weeds, which often involves the release of multiple host-specific agents. Releasing multiple agents has inherent safety concerns as the introduction of each new agent is associated with risks, but is often required to improve control where establishment is limited. Climatic incompatibility between the agent’s thermal physiology and its introduced range often causes agents to fail to establish. However, it has been suggested that the thermal physiology of insects is plastic. Therefore, the potential to manipulate their thermal physiologies before releasing them into the field needs to be explored; reducing the need to release additional agents, thereby ensuring the safety of biological control. This thesis therefore aimed to firstly, determine whether season and locality influenced the thermal physiology of two field populations of a water hyacinth (Eichhornia crassipes) control agent, the mirid Eccritotarsus catarinensis; one collected from the hottest establishment site, and one collected from the coldest establishment site in South Africa. Their thermal physiology was significantly influenced by season and not by the sites’ climate, suggesting their thermal physiology is plastic under field conditions. Secondly, the classical method of determining the lower critical thermal limit (CTmin), and a new respirometry method of determining this limit, compared the thermal physiology of two Eccritotarsus species reared in quarantine. Eccritotarsus catarinensis was significantly more cold tolerant than the more recently released Eccritotarsus eichhorniae, despite similar maintenance conditions, and as such, was used to establish whether cold hardening under laboratory conditions was possible. Successfully cold hardened E. catarinensis had a significantly lower CTmin compared to the field cold acclimated population, suggesting that cold hardening of agents could be conducted before release to improve their cold tolerance and increase their chances of establishment, allowing for further adaptation to colder climates in the field to occur. Increasing establishment of the most effective agents will decrease the number of agents needed in a biological control programme, thus encouraging a more parsimonious approach to biological control.
- Full Text:
- Date Issued: 2018
- Authors: Griffith, Tamzin Camilla
- Date: 2018
- Subjects: Aquatic weeds -- Biological control , Water hyacinth -- Biological control , Insects -- Physiology , Miridae -- Effect of low temperatures on , Cold adaptation , Insects as biological pest control agents , Eccritotarsus catarinensis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63301 , vital:28391
- Description: Biological control is commonly used for the control of invasive aquatic weeds, which often involves the release of multiple host-specific agents. Releasing multiple agents has inherent safety concerns as the introduction of each new agent is associated with risks, but is often required to improve control where establishment is limited. Climatic incompatibility between the agent’s thermal physiology and its introduced range often causes agents to fail to establish. However, it has been suggested that the thermal physiology of insects is plastic. Therefore, the potential to manipulate their thermal physiologies before releasing them into the field needs to be explored; reducing the need to release additional agents, thereby ensuring the safety of biological control. This thesis therefore aimed to firstly, determine whether season and locality influenced the thermal physiology of two field populations of a water hyacinth (Eichhornia crassipes) control agent, the mirid Eccritotarsus catarinensis; one collected from the hottest establishment site, and one collected from the coldest establishment site in South Africa. Their thermal physiology was significantly influenced by season and not by the sites’ climate, suggesting their thermal physiology is plastic under field conditions. Secondly, the classical method of determining the lower critical thermal limit (CTmin), and a new respirometry method of determining this limit, compared the thermal physiology of two Eccritotarsus species reared in quarantine. Eccritotarsus catarinensis was significantly more cold tolerant than the more recently released Eccritotarsus eichhorniae, despite similar maintenance conditions, and as such, was used to establish whether cold hardening under laboratory conditions was possible. Successfully cold hardened E. catarinensis had a significantly lower CTmin compared to the field cold acclimated population, suggesting that cold hardening of agents could be conducted before release to improve their cold tolerance and increase their chances of establishment, allowing for further adaptation to colder climates in the field to occur. Increasing establishment of the most effective agents will decrease the number of agents needed in a biological control programme, thus encouraging a more parsimonious approach to biological control.
- Full Text:
- Date Issued: 2018
Evidence for a biological control-induced regime shift between floating and submerged invasive plant dominance in South Africa
- Authors: Strange, Emily Frances
- Date: 2017
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/32448 , vital:24044
- Description: South Africa has a long history battling the establishment and spread of invasive floating macrophytes. The negative consequences of these are costly both economically and ecologically. They form dense mats on the water's surface that deplete resources such as light and oxygen to the submerged community, which creates anoxic conditions, reduces biodiversity and limits access to freshwater. The past thirty years of South African invasive plant research and the implementation of nationwide biological control programmes has led to widespread control of these species in many degraded systems. Such initiatives are aimed at restoring access to potable freshwater and increasing native biodiversity. However, in recent years, where there has been a decline in floating invasive plant populations, an increase in the establishment and spread of submerged invasive plant species has been observed. Species such as Brazilian waterweed (Egeria densa (Planch.) (Hydrocharitaceae)) and Eurasian watermilfoil (Myriophyllum spicatum (L.) (Haloragaceae)) have been recorded in South African freshwater systems, posing significant threats to aquatic ecosystems. This thesis proposes that the biological control of floating invasive plants, which occurs in numerous dams and rivers nationwide, is the catalyst of a regime shift from floating invasive to submerged invasive plant dominance. Regime shifts are large and often sudden changes in the key structure and functioning of ecosystems, and studies into their occurrence and driving mechanisms broadens understanding of community structures and can guide effective resource management. In order to explore the existence of this new regime shift, a multi-platform approach using controlled experiments and ecological modelling techniques was employed. A model system was created consisting of a floating invasive (Pistia stratiotes L. (Araceae)), a submerged invasive (E. densa) and an ecologically analogous submerged native plant species (Lagarosiphon major (Ridl.) Moss (Hydrocharitaceae)). A suite of experiments was conducted to explore the interactions between the floating and submerged plants under varying regimes of floating plant biological control and levels of nutrient loading. These experiments revealed a competitive advantage of the invasive E. densa over the native L. major that increased by 86% under heavy nutrient loading. The relative growth rate and accumulated biomass of E. densa was significantly higher for plants grown in the presence of biologically controlled P. stratiotes (compared to insect free plants). This demonstrates a high capacity for the invasive E. densa to capitalise on resources made newly available through the biological control of the floating plants. In contrast, the native L. major fared poorly when grown in the presence of the floating P. stratiotes, regardless of applied biological control measures. The experimental observations were then used to parameterise a mathematical model, built to provide a holistic understanding of the individually assessed interactions which work together as the driving mechanisms underpinning the newly identified regime shift. This thesis utilised a multi-platform approach to build the first body of evidence in support of a newly recognised regime shift between floating invasive and submerged invasive plant dominance, as driven by biological control. The results indicate that a reduction in the nutrient loading of South Africa's freshwater systems will reduce negative impacts of submerged invasive macrophytes, whilst increasing system resilience against future invasion. The evidence presented has the potential to better inform management of South Africa's freshwater systems and highlights the importance of integrating multi-trophic interactions when considering future invasive plant management. This research also opens up a multitude of possibilities for studies into submerged plant invasion mechanisms and resilience of native macrophyte communities in South Africa, and further afield.
- Full Text:
- Date Issued: 2017
- Authors: Strange, Emily Frances
- Date: 2017
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/32448 , vital:24044
- Description: South Africa has a long history battling the establishment and spread of invasive floating macrophytes. The negative consequences of these are costly both economically and ecologically. They form dense mats on the water's surface that deplete resources such as light and oxygen to the submerged community, which creates anoxic conditions, reduces biodiversity and limits access to freshwater. The past thirty years of South African invasive plant research and the implementation of nationwide biological control programmes has led to widespread control of these species in many degraded systems. Such initiatives are aimed at restoring access to potable freshwater and increasing native biodiversity. However, in recent years, where there has been a decline in floating invasive plant populations, an increase in the establishment and spread of submerged invasive plant species has been observed. Species such as Brazilian waterweed (Egeria densa (Planch.) (Hydrocharitaceae)) and Eurasian watermilfoil (Myriophyllum spicatum (L.) (Haloragaceae)) have been recorded in South African freshwater systems, posing significant threats to aquatic ecosystems. This thesis proposes that the biological control of floating invasive plants, which occurs in numerous dams and rivers nationwide, is the catalyst of a regime shift from floating invasive to submerged invasive plant dominance. Regime shifts are large and often sudden changes in the key structure and functioning of ecosystems, and studies into their occurrence and driving mechanisms broadens understanding of community structures and can guide effective resource management. In order to explore the existence of this new regime shift, a multi-platform approach using controlled experiments and ecological modelling techniques was employed. A model system was created consisting of a floating invasive (Pistia stratiotes L. (Araceae)), a submerged invasive (E. densa) and an ecologically analogous submerged native plant species (Lagarosiphon major (Ridl.) Moss (Hydrocharitaceae)). A suite of experiments was conducted to explore the interactions between the floating and submerged plants under varying regimes of floating plant biological control and levels of nutrient loading. These experiments revealed a competitive advantage of the invasive E. densa over the native L. major that increased by 86% under heavy nutrient loading. The relative growth rate and accumulated biomass of E. densa was significantly higher for plants grown in the presence of biologically controlled P. stratiotes (compared to insect free plants). This demonstrates a high capacity for the invasive E. densa to capitalise on resources made newly available through the biological control of the floating plants. In contrast, the native L. major fared poorly when grown in the presence of the floating P. stratiotes, regardless of applied biological control measures. The experimental observations were then used to parameterise a mathematical model, built to provide a holistic understanding of the individually assessed interactions which work together as the driving mechanisms underpinning the newly identified regime shift. This thesis utilised a multi-platform approach to build the first body of evidence in support of a newly recognised regime shift between floating invasive and submerged invasive plant dominance, as driven by biological control. The results indicate that a reduction in the nutrient loading of South Africa's freshwater systems will reduce negative impacts of submerged invasive macrophytes, whilst increasing system resilience against future invasion. The evidence presented has the potential to better inform management of South Africa's freshwater systems and highlights the importance of integrating multi-trophic interactions when considering future invasive plant management. This research also opens up a multitude of possibilities for studies into submerged plant invasion mechanisms and resilience of native macrophyte communities in South Africa, and further afield.
- Full Text:
- Date Issued: 2017
Post-release evaluation and thermal physiology of the Pereskia stem-wilter, Catorhintha schaffneri (Coreidae), a new biological control agent for Pereskia aculeata (Cactaceae)
- Authors: Muskett, Phillippa Claire
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/36094 , vital:24477
- Description: Catorhintha schaffneri Brailovsky and Garcia (Hemiptera: Coreidae) is a biological control agent that was recently accepted for release in South Africa to control Pereskia aculeata Miller (Cactaceae), an invasive creeping cactus. The aim of this thesis was to conduct post-release research to ensure that C. schaffneri is utilised to its full potential. To achieve this aim, and focus release efforts, the thermal physiology of C. schaffneri was investigated to predict where in South Africa the agent is most likely to establish. These predictions were then tested by releasing the agent at field sites with a wide variety of climatic conditions and evaluating establishment success. When invasive plants invade a wide distribution, made up of areas with different climatic conditions, biological control agents may not establish or be effective throughout the invaded distribution. According to the thermal physiology of C. schaffneri, it is most likely to establish and become effective in the subtropical region of South Africa, along the coast of KwaZulu- Natal. Cold winters, or generally low year-round temperatures, may limit establishment in the more temperate areas of South Africa in the Eastern and Western Cape as well as inland in the Highveld region. These predictions can be used to focus release efforts to climatically suitable regions and stop releases in areas where C. schaffneri cannot survive. Predictions based on thermal physiology may not account for all of the variables which affect establishment. To account for other variables, the establishment of C. schaffneri was tested using closely monitored field release studies. During these studies the effect of other variables such as; microclimate temperature, humidity, precipitation, plant quality and release strategy were considered. Low humidity, precipitation and plant quality appear to affect the establishment of C. schaffneri in the subtropical areas of South Africa. The experiment was conducted during a period of drought, and this may have resulted in lower establishment rates. The most successful release strategy for C. schaffneri was the use of multiple, small releases rather than single releases of the same number of individuals. The field based study was therefore able to improve the biological control of P. aculeata by increasing the chance that each release of C. schaffneri results in establishment. The post-release studies presented in this thesis will increase the impact of C. schaffneri by focussing release efforts to climatically suitable sites, releasing at appropriate times of year and releasing the agent in a manner that increases establishment success. Post-release studies, such as those presented here, can make biological control programmes more efficient and effective.
- Full Text:
- Date Issued: 2017
- Authors: Muskett, Phillippa Claire
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/36094 , vital:24477
- Description: Catorhintha schaffneri Brailovsky and Garcia (Hemiptera: Coreidae) is a biological control agent that was recently accepted for release in South Africa to control Pereskia aculeata Miller (Cactaceae), an invasive creeping cactus. The aim of this thesis was to conduct post-release research to ensure that C. schaffneri is utilised to its full potential. To achieve this aim, and focus release efforts, the thermal physiology of C. schaffneri was investigated to predict where in South Africa the agent is most likely to establish. These predictions were then tested by releasing the agent at field sites with a wide variety of climatic conditions and evaluating establishment success. When invasive plants invade a wide distribution, made up of areas with different climatic conditions, biological control agents may not establish or be effective throughout the invaded distribution. According to the thermal physiology of C. schaffneri, it is most likely to establish and become effective in the subtropical region of South Africa, along the coast of KwaZulu- Natal. Cold winters, or generally low year-round temperatures, may limit establishment in the more temperate areas of South Africa in the Eastern and Western Cape as well as inland in the Highveld region. These predictions can be used to focus release efforts to climatically suitable regions and stop releases in areas where C. schaffneri cannot survive. Predictions based on thermal physiology may not account for all of the variables which affect establishment. To account for other variables, the establishment of C. schaffneri was tested using closely monitored field release studies. During these studies the effect of other variables such as; microclimate temperature, humidity, precipitation, plant quality and release strategy were considered. Low humidity, precipitation and plant quality appear to affect the establishment of C. schaffneri in the subtropical areas of South Africa. The experiment was conducted during a period of drought, and this may have resulted in lower establishment rates. The most successful release strategy for C. schaffneri was the use of multiple, small releases rather than single releases of the same number of individuals. The field based study was therefore able to improve the biological control of P. aculeata by increasing the chance that each release of C. schaffneri results in establishment. The post-release studies presented in this thesis will increase the impact of C. schaffneri by focussing release efforts to climatically suitable sites, releasing at appropriate times of year and releasing the agent in a manner that increases establishment success. Post-release studies, such as those presented here, can make biological control programmes more efficient and effective.
- Full Text:
- Date Issued: 2017
The potential of hydrellia egeriae rodrigues (diptera: ephydridae) as a biocontrol agent for egeria densa planch. (hydrocharitaceae) in South Africa
- Authors: Smith, Rosali
- Date: 2017
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/53733 , vital:26314
- Description: The integrity of South Africa’s valuable freshwater ecosystems has been threatened by aquatic invasive plants since the 1900s. Floating aquatic weeds, such as Eichhornia crassipes (C. Mart) Solms (Pondederiaceae), Pistia stratiotes L. (Araceae), Salvinia molesta D.S. Mitchell (Salviniaceae), Azolla filiculoides Lam. (Azollaceae), and the emergent weed, Myriophyllum aquaticum Verdc. (Haloragaceae) benefited from open, nutrient-rich water bodies. Due to the limitations of mechanical and chemical control in aquatic environments, classical biological control has been a huge asset in managing these weeds; consequently bringing them under complete or substantial control. However, submerged aquatic weeds are widely distributed through the aquarium trade in South Africa; facilitating their invasion into new habitats. The removal of surface mats following the successful management of floating weeds has enhanced the growth and competitive ability of submerged aquatic weeds, such as Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae), Myriophyllum spicatum L. (Haloragaceae) and Egeria densa Planch. (Hydrocharitaceae) in South Africa. Of these species, E. densa has become the most widely distributed, invading numerous systems across South Africa. Compared to other exotic submerged aquatic plants, E. densa is the only species capable of inhabiting freshwater systems in every province and therefore, it is vital to manage existing populations and prevent its further distribution and invasion. Hydrellia spp. (Diptera: Ephydridae) biological control agents have been used extensively in the management of submerged aquatic weeds elsewhere, particularly those in the Hydrocharitaceae (Balciunas and Burrows 1996; Wheeler and Center 2001. Hydrellia egeriae Rodrigues (Diptera: Ephydridae) has been identified as a promising candidate for E. densa and was imported into quarantine at Rhodes University, Grahamstown in 2014. The aims of this study were to conduct a pre-release assessment of the potential of H. egeriae as a biological control agent for E. densa in South Africa. The first objective of this study was to establish the life history of the agent under controlled conditions on E. densa found in South Africa, as well as its population growth parameters to predict its invasion success in the field. Secondly, laboratory host-specificity testing was conducted to validate the host range of the agent, in view of published native range host-specificity testing, and to establish potential risks to non-target species, should it be released. Finally, a biological control agent should also effectively reduce the fitness of its host plant, and therefore, impact studies were conducted. Laboratory impact studies have been limited in the past, in that they only investigate agent damage for short ecological periods, thus underestimating the damage capacity of the agent under investigation. Therefore, the damage capacity of H. egeriae was investigated over three consecutive generations in multi-generational impact trials. In a controlled environment of 22 ± 2°C, H. egeriae exhibited the ability to rapidly increase in population size within a short period of time, which will enhance agent establishment and build-up in the field. Host-specificity trials indicated that H. egeriae has a host range restricted to the Hydrocharitaceae, with exploratory feeding and development on Lagarosiphon major Ridley, L. muscoides Harvey and Vallisneria spiralis L. However, only L. major supported agent development during paired larval choice tests, and continuation trials showed that the test species was not physiologically capable of supporting viable agent populations. Risk analysis illustrated that the feeding and reproductive risks that H. egeriae pose to non-target species are very low and therefore, H. egeriae should be safe for release in South Africa. Additionally, significant damage to vital plant structures (shoot growth and side shoot length) was only recorded under high (five larvae) agent abundances. Encouragingly, the number of leaves mined at the end of the experiment was similar for both intermediate (three) and high (five) larval abundances, suggesting that cumulative leaf-mining under intermediate larval abundances has the potential to reduce the fitness of E. densa, given sufficient time. Results from pre-release assessments provide a robust understanding of the specialization of the potential biological control agent to its host plant. Nevertheless, the absolute success of a biological control programme depends on the many factors after prerelease assessments that determine agent establishment, persistence and target weed suppression, e.g. mass-rearing, release protocols and a/biotic factors within the recipient community. Considering these factors, the best mass-rearing and release protocols are proposed here and future research priorities are identified. Finally, the long term success for managing E. densa in South Africa will require a holistic approach to address the underlying factors, such as eutrophication and human-mediated distribution that drive submerged aquatic plant invasions.
- Full Text:
- Date Issued: 2017
- Authors: Smith, Rosali
- Date: 2017
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/53733 , vital:26314
- Description: The integrity of South Africa’s valuable freshwater ecosystems has been threatened by aquatic invasive plants since the 1900s. Floating aquatic weeds, such as Eichhornia crassipes (C. Mart) Solms (Pondederiaceae), Pistia stratiotes L. (Araceae), Salvinia molesta D.S. Mitchell (Salviniaceae), Azolla filiculoides Lam. (Azollaceae), and the emergent weed, Myriophyllum aquaticum Verdc. (Haloragaceae) benefited from open, nutrient-rich water bodies. Due to the limitations of mechanical and chemical control in aquatic environments, classical biological control has been a huge asset in managing these weeds; consequently bringing them under complete or substantial control. However, submerged aquatic weeds are widely distributed through the aquarium trade in South Africa; facilitating their invasion into new habitats. The removal of surface mats following the successful management of floating weeds has enhanced the growth and competitive ability of submerged aquatic weeds, such as Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae), Myriophyllum spicatum L. (Haloragaceae) and Egeria densa Planch. (Hydrocharitaceae) in South Africa. Of these species, E. densa has become the most widely distributed, invading numerous systems across South Africa. Compared to other exotic submerged aquatic plants, E. densa is the only species capable of inhabiting freshwater systems in every province and therefore, it is vital to manage existing populations and prevent its further distribution and invasion. Hydrellia spp. (Diptera: Ephydridae) biological control agents have been used extensively in the management of submerged aquatic weeds elsewhere, particularly those in the Hydrocharitaceae (Balciunas and Burrows 1996; Wheeler and Center 2001. Hydrellia egeriae Rodrigues (Diptera: Ephydridae) has been identified as a promising candidate for E. densa and was imported into quarantine at Rhodes University, Grahamstown in 2014. The aims of this study were to conduct a pre-release assessment of the potential of H. egeriae as a biological control agent for E. densa in South Africa. The first objective of this study was to establish the life history of the agent under controlled conditions on E. densa found in South Africa, as well as its population growth parameters to predict its invasion success in the field. Secondly, laboratory host-specificity testing was conducted to validate the host range of the agent, in view of published native range host-specificity testing, and to establish potential risks to non-target species, should it be released. Finally, a biological control agent should also effectively reduce the fitness of its host plant, and therefore, impact studies were conducted. Laboratory impact studies have been limited in the past, in that they only investigate agent damage for short ecological periods, thus underestimating the damage capacity of the agent under investigation. Therefore, the damage capacity of H. egeriae was investigated over three consecutive generations in multi-generational impact trials. In a controlled environment of 22 ± 2°C, H. egeriae exhibited the ability to rapidly increase in population size within a short period of time, which will enhance agent establishment and build-up in the field. Host-specificity trials indicated that H. egeriae has a host range restricted to the Hydrocharitaceae, with exploratory feeding and development on Lagarosiphon major Ridley, L. muscoides Harvey and Vallisneria spiralis L. However, only L. major supported agent development during paired larval choice tests, and continuation trials showed that the test species was not physiologically capable of supporting viable agent populations. Risk analysis illustrated that the feeding and reproductive risks that H. egeriae pose to non-target species are very low and therefore, H. egeriae should be safe for release in South Africa. Additionally, significant damage to vital plant structures (shoot growth and side shoot length) was only recorded under high (five larvae) agent abundances. Encouragingly, the number of leaves mined at the end of the experiment was similar for both intermediate (three) and high (five) larval abundances, suggesting that cumulative leaf-mining under intermediate larval abundances has the potential to reduce the fitness of E. densa, given sufficient time. Results from pre-release assessments provide a robust understanding of the specialization of the potential biological control agent to its host plant. Nevertheless, the absolute success of a biological control programme depends on the many factors after prerelease assessments that determine agent establishment, persistence and target weed suppression, e.g. mass-rearing, release protocols and a/biotic factors within the recipient community. Considering these factors, the best mass-rearing and release protocols are proposed here and future research priorities are identified. Finally, the long term success for managing E. densa in South Africa will require a holistic approach to address the underlying factors, such as eutrophication and human-mediated distribution that drive submerged aquatic plant invasions.
- Full Text:
- Date Issued: 2017
Life history of the maritime platygastrid Echthrodesis lamorali Masner 1968 (Hymenoptera: Platygastridae: Scelioninae)
- Authors: Owen, Candice Ann
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/837 , vital:19995 , 10.21504/10962/837
- Description: Echthrodesis lamorali Masner 1968 (Hymenoptera: Platygastridae, Scelioninae) is an intertidal parasitoid wasp that uses the eggs of the maritime spider, Desis formidabilis O.P. Cambridge 1890 (Araneae: Desidae), as a host. This species is one of only three known maritime parasitoids globally, and is the only known spider egg parasitoid that attacks its host within the intertidal region in southern Africa. Originally described from ‘The Island’, Kommetjie (Western Cape, South Africa), this shore was the only known locality of the species at the commencement of this thesis. Furthermore, the extent of the parasitism pressure the wasp exerts on D. formidabilis was largely unknown, along with its basic biology (drivers of its broad-scale and fine-scale distribution patterns; parasitism incidence; and sex ratios) and morphological and physiological adaptations for living within the frequently saltwater-inundated environment. This thesis unravelled these aspects, as well as experimentally provided data for many components of the life history of E. lamorali that had only been hypothesized by other authors, at a variety of scales, from the country-wide ecosystem, to single shores, and finally to the scale of the individual. While the distribution of E. lamorali was found to be much wider than previously thought, it remained restricted to the shores of the Cape Peninsula (Western Cape, South Africa). The host spiders were located throughout a much wider distributional range than the wasp, from East London in the east to the Peninsula, but some behavioural and morphological differences were found between those within and outside of the range of the parasitoid, suggesting range-limitation imposed by the host on E. lamorali. This limitation may be strengthened by the general lack of suitable shore types within the close vicinity of the Peninsula. Modelling using macro-climatic conditions suggested that maximum temperatures and humidities were also largely limiting to E. lamorali, although these patterns were not observable in the micro-climates in which the species survives. The wasp populations and spiders within the range of E. lamorali as identified in Chapter 2 were assessed to determine any preferences for local conditions, including location along the Peninsula, nesting sites and intertidal zones within single shores, using AICc modelling, which detected parasitism patterns in D. formidabilis and E. lamorali populations, as well as the sex ratios in the latter species. The models showed that the spider population size and distribution was more influenced by bottom-up factors such as abiotic components of the shore than by parasitism, which only showed density dependence with the host at certain scales. Both host and parasitoid populations illustrated a preference for the middle zone on single shores. Observed spider nest characteristics suggested opportunistic nesting behaviour in the species, although preference was shown for construction along an east-west orientation and in locations with low sun exposure. Along with larger population sizes on the west coast over the east coast (not reflected by E. lamorali), these observations suggest that D. formidabilis prefers cooler environments. Spider brood success was 50% in unparasitized egg-sacs, but this figure halved when E. lamorali gained access to the eggs (of which 100% within a single compartment were parasitized each time). Encapsulation of the embryo was found to be positively correlated with parasitism, indicating some form of host resistance. Resultant parasitoid broods illustrated a strong female bias in the species, as is common for this group of insects. The life history of E. lamorali was then assessed at a smaller scale, that of the individual. Scanning electron microscopy of whole E. lamorali specimens and light microscopy of sectioned specimens demonstrated no morphological adaptations in the trachea and spiracles to cope with saltwater inundation. On the other hand, respirometry experiments categorically demonstrated that the species copes with inundation through the formation of a physical gill over the full habitus, and the induction of a state of torpor to reduce metabolic needs, when submerged. This precludes the need for any further morphological adaptations. Determination of the wasp’s critical thermal tolerance illustrated a wide temperature range with a particularly cold lower limit of -1.1ºC ± 0.16, suggesting the presence of related genera or ancestors in much colder environments. With a much broader distribution than previously thought, and the inclusion of the distributional range of E. lamorali within the Table Mountain National Park, this species is being effectively conserved and managed through the umbrella-conservation of the park. Links to the host proved to vary at differing scales, proving the need for scale considerations to be included in other similar biological and ecological studies. Finally, the species showed physiological adaptation to its intertidal existence. Echthrodesis lamorali, the only discovered maritime spider egg parasitoid in Southern Africa, displayed unusual characteristics at every scale of its life history and as such, warrants further investigation.
- Full Text:
- Date Issued: 2016
- Authors: Owen, Candice Ann
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/837 , vital:19995 , 10.21504/10962/837
- Description: Echthrodesis lamorali Masner 1968 (Hymenoptera: Platygastridae, Scelioninae) is an intertidal parasitoid wasp that uses the eggs of the maritime spider, Desis formidabilis O.P. Cambridge 1890 (Araneae: Desidae), as a host. This species is one of only three known maritime parasitoids globally, and is the only known spider egg parasitoid that attacks its host within the intertidal region in southern Africa. Originally described from ‘The Island’, Kommetjie (Western Cape, South Africa), this shore was the only known locality of the species at the commencement of this thesis. Furthermore, the extent of the parasitism pressure the wasp exerts on D. formidabilis was largely unknown, along with its basic biology (drivers of its broad-scale and fine-scale distribution patterns; parasitism incidence; and sex ratios) and morphological and physiological adaptations for living within the frequently saltwater-inundated environment. This thesis unravelled these aspects, as well as experimentally provided data for many components of the life history of E. lamorali that had only been hypothesized by other authors, at a variety of scales, from the country-wide ecosystem, to single shores, and finally to the scale of the individual. While the distribution of E. lamorali was found to be much wider than previously thought, it remained restricted to the shores of the Cape Peninsula (Western Cape, South Africa). The host spiders were located throughout a much wider distributional range than the wasp, from East London in the east to the Peninsula, but some behavioural and morphological differences were found between those within and outside of the range of the parasitoid, suggesting range-limitation imposed by the host on E. lamorali. This limitation may be strengthened by the general lack of suitable shore types within the close vicinity of the Peninsula. Modelling using macro-climatic conditions suggested that maximum temperatures and humidities were also largely limiting to E. lamorali, although these patterns were not observable in the micro-climates in which the species survives. The wasp populations and spiders within the range of E. lamorali as identified in Chapter 2 were assessed to determine any preferences for local conditions, including location along the Peninsula, nesting sites and intertidal zones within single shores, using AICc modelling, which detected parasitism patterns in D. formidabilis and E. lamorali populations, as well as the sex ratios in the latter species. The models showed that the spider population size and distribution was more influenced by bottom-up factors such as abiotic components of the shore than by parasitism, which only showed density dependence with the host at certain scales. Both host and parasitoid populations illustrated a preference for the middle zone on single shores. Observed spider nest characteristics suggested opportunistic nesting behaviour in the species, although preference was shown for construction along an east-west orientation and in locations with low sun exposure. Along with larger population sizes on the west coast over the east coast (not reflected by E. lamorali), these observations suggest that D. formidabilis prefers cooler environments. Spider brood success was 50% in unparasitized egg-sacs, but this figure halved when E. lamorali gained access to the eggs (of which 100% within a single compartment were parasitized each time). Encapsulation of the embryo was found to be positively correlated with parasitism, indicating some form of host resistance. Resultant parasitoid broods illustrated a strong female bias in the species, as is common for this group of insects. The life history of E. lamorali was then assessed at a smaller scale, that of the individual. Scanning electron microscopy of whole E. lamorali specimens and light microscopy of sectioned specimens demonstrated no morphological adaptations in the trachea and spiracles to cope with saltwater inundation. On the other hand, respirometry experiments categorically demonstrated that the species copes with inundation through the formation of a physical gill over the full habitus, and the induction of a state of torpor to reduce metabolic needs, when submerged. This precludes the need for any further morphological adaptations. Determination of the wasp’s critical thermal tolerance illustrated a wide temperature range with a particularly cold lower limit of -1.1ºC ± 0.16, suggesting the presence of related genera or ancestors in much colder environments. With a much broader distribution than previously thought, and the inclusion of the distributional range of E. lamorali within the Table Mountain National Park, this species is being effectively conserved and managed through the umbrella-conservation of the park. Links to the host proved to vary at differing scales, proving the need for scale considerations to be included in other similar biological and ecological studies. Finally, the species showed physiological adaptation to its intertidal existence. Echthrodesis lamorali, the only discovered maritime spider egg parasitoid in Southern Africa, displayed unusual characteristics at every scale of its life history and as such, warrants further investigation.
- Full Text:
- Date Issued: 2016
Friend or foe? : Resolving the status of the submerged macrophyte Myriophyllum spicatum L. (Haloragaceae) in southern Africa
- Weyl, Philip Sebastian Richard
- Authors: Weyl, Philip Sebastian Richard
- Date: 2015
- Subjects: Eurasian watermilfoil -- Africa, Southern , Eurasian watermilfoil -- Biological control
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5933 , http://hdl.handle.net/10962/d1017811
- Description: Myriophyllum spicatum L. (Haloragaceae), a submerged macrophyte, has been recorded in southern Africa since 1829, but only considered problematic as recently as 2005. In light of this, water resource managers are looking to control M. spicatum in southern African water bodies where it is problematic. Amongst control options available in South Africa, biological control is potentially the most cost effective and sustainable option for M. spicatum. However, there is a debate over the status of this plant in southern Africa with several authors reporting it as a native component of the aquatic ecosystem, while others argue that it has been introduced from Europe or Asia. The aim of this thesis is to use a multifaceted approach to resolve the status of M. spicatum, by studying aspects of its history, distribution, mechanisms of its adaptations, biotic interactions and genetic relationships in southern Africa. By resolving the status of this plant as either native or exotic, appropriate management strategies can be initiated for its control in situations where it is considered a problem.A review of the evidence collected from this thesis does not provide convincing evidence for the anthropogenic introduction of M. spicatum into southern Africa, and it is probably native to the region. The disjunct distribution as well as regular local extinctions of populations is relatively common for species that are at the edge of their range. The populations in southern Africa could thus be relics from a much wider distribution in the past. The development of local adaptations in southern Africa provides evidence for this and suggests that the populations have been isolated for a substantial period of time and have had a long evolutionary history in the region. The lack of specialist herbivores should suggest that M. spicatum has been introduced, but the complete lack of herbivores, including generalists, may weaken that argument. The lack of herbivores could be a result of something inherent in the plant, irrespective of a lack of evolutionary history in the region. The genetic evidence suggests a European origin, but is characteristic of a population (southern Africa as a whole) that has been isolated for a considerable time. Despite the findings of this research, M. spicatum is considered problematic in southern Africa and warrants control in certain systems. Whether or not biological control should be a component of the management strategy is open to further debate. The benefits in a southern African context may outweigh the risks, based on the specificity of the biological control agent proposed. However, the perceived negative impacts of M. spicatum are likely to be a symptom of a more serious underlying cause, such as nutrient loading and changes in land use patterns. Therefore the control of this native species is a water resource management issue and not a biological control issue.
- Full Text:
- Date Issued: 2015
- Authors: Weyl, Philip Sebastian Richard
- Date: 2015
- Subjects: Eurasian watermilfoil -- Africa, Southern , Eurasian watermilfoil -- Biological control
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5933 , http://hdl.handle.net/10962/d1017811
- Description: Myriophyllum spicatum L. (Haloragaceae), a submerged macrophyte, has been recorded in southern Africa since 1829, but only considered problematic as recently as 2005. In light of this, water resource managers are looking to control M. spicatum in southern African water bodies where it is problematic. Amongst control options available in South Africa, biological control is potentially the most cost effective and sustainable option for M. spicatum. However, there is a debate over the status of this plant in southern Africa with several authors reporting it as a native component of the aquatic ecosystem, while others argue that it has been introduced from Europe or Asia. The aim of this thesis is to use a multifaceted approach to resolve the status of M. spicatum, by studying aspects of its history, distribution, mechanisms of its adaptations, biotic interactions and genetic relationships in southern Africa. By resolving the status of this plant as either native or exotic, appropriate management strategies can be initiated for its control in situations where it is considered a problem.A review of the evidence collected from this thesis does not provide convincing evidence for the anthropogenic introduction of M. spicatum into southern Africa, and it is probably native to the region. The disjunct distribution as well as regular local extinctions of populations is relatively common for species that are at the edge of their range. The populations in southern Africa could thus be relics from a much wider distribution in the past. The development of local adaptations in southern Africa provides evidence for this and suggests that the populations have been isolated for a substantial period of time and have had a long evolutionary history in the region. The lack of specialist herbivores should suggest that M. spicatum has been introduced, but the complete lack of herbivores, including generalists, may weaken that argument. The lack of herbivores could be a result of something inherent in the plant, irrespective of a lack of evolutionary history in the region. The genetic evidence suggests a European origin, but is characteristic of a population (southern Africa as a whole) that has been isolated for a considerable time. Despite the findings of this research, M. spicatum is considered problematic in southern Africa and warrants control in certain systems. Whether or not biological control should be a component of the management strategy is open to further debate. The benefits in a southern African context may outweigh the risks, based on the specificity of the biological control agent proposed. However, the perceived negative impacts of M. spicatum are likely to be a symptom of a more serious underlying cause, such as nutrient loading and changes in land use patterns. Therefore the control of this native species is a water resource management issue and not a biological control issue.
- Full Text:
- Date Issued: 2015
Biological control as an integrated control method in the management of aquatic weeds in an urban environmental and socio-political landscape : case study : Cape Town Metropolitan Area
- Authors: Stafford, Martha Louise
- Date: 2014
- Subjects: Aquatic weeds -- South Africa -- Cape Town , Aquatic weeds -- Biological control -- South Africa -- Cape Town , Water hyacinth -- Biological control -- South Africa -- Cape Town , Metropolitan areas -- South Africa -- Cape Town
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5874 , http://hdl.handle.net/10962/d1013015
- Description: Aquatic weeds transform and degrade the ecosystems which they invade, impacting various aspects of their surroundings ranging from the community level to disrupting important processes affecting ecosystem services. All of the major aquatic weeds of South Africa are found in the Cape Town Metropolitan Area. Landowners, whether private or public, are legally obliged to manage the listed invasive species through applying environmentally acceptable methodologies. This thesis provides an overview of the strategic management options, prevention, early detection, rapid response and eradication of new invasions, and containment and control species of established species. It discusses the different control methods available for managing aquatic weeds, namely mechanical, manual, chemical and biological, and the integration of different methods to improve their effectiveness. Although various studies have shown that biological control is the most cost–effective, environmentally-friendly and sustainable method, it is not yet fully integrated into weed management programmes in South Africa. In addition, the successes achieved in other parts of the world with the control of water hyacinth through biological control have not been repeated in the urban environment, despite the fact that South Africa has the highest number of biological control agents available for the weed. Urbanisation puts pressure on the natural environment and ecosystem functioning. Nutrient-enriched waters support aquatic weed growth and pose a challenge to the management thereof, in particular with regard to integrating biological control into management programmes. The aims of this study were to determine the reasons for the lack of integration of biological control into weed management programmes in South Africa, to determine the feasibility of integrating biological control in aquatic weed management programmes in a complex urban environmental and socio-political landscape by means of three case studies in the Cape Town Metropolitan Area, which showed that biological control is feasible in urban environments and should be considered. Two surveys were conducted to determine the reasons for the lack of integration of biological control into weed management programmes. The surveys showed that there is a gap between research and implementation as a result of poor communication, non-supporting institutional arrangements and a lack of appropriate capacity and skills at the implementation level. Recommendations were offered to address these issues.
- Full Text:
- Date Issued: 2014
- Authors: Stafford, Martha Louise
- Date: 2014
- Subjects: Aquatic weeds -- South Africa -- Cape Town , Aquatic weeds -- Biological control -- South Africa -- Cape Town , Water hyacinth -- Biological control -- South Africa -- Cape Town , Metropolitan areas -- South Africa -- Cape Town
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5874 , http://hdl.handle.net/10962/d1013015
- Description: Aquatic weeds transform and degrade the ecosystems which they invade, impacting various aspects of their surroundings ranging from the community level to disrupting important processes affecting ecosystem services. All of the major aquatic weeds of South Africa are found in the Cape Town Metropolitan Area. Landowners, whether private or public, are legally obliged to manage the listed invasive species through applying environmentally acceptable methodologies. This thesis provides an overview of the strategic management options, prevention, early detection, rapid response and eradication of new invasions, and containment and control species of established species. It discusses the different control methods available for managing aquatic weeds, namely mechanical, manual, chemical and biological, and the integration of different methods to improve their effectiveness. Although various studies have shown that biological control is the most cost–effective, environmentally-friendly and sustainable method, it is not yet fully integrated into weed management programmes in South Africa. In addition, the successes achieved in other parts of the world with the control of water hyacinth through biological control have not been repeated in the urban environment, despite the fact that South Africa has the highest number of biological control agents available for the weed. Urbanisation puts pressure on the natural environment and ecosystem functioning. Nutrient-enriched waters support aquatic weed growth and pose a challenge to the management thereof, in particular with regard to integrating biological control into management programmes. The aims of this study were to determine the reasons for the lack of integration of biological control into weed management programmes in South Africa, to determine the feasibility of integrating biological control in aquatic weed management programmes in a complex urban environmental and socio-political landscape by means of three case studies in the Cape Town Metropolitan Area, which showed that biological control is feasible in urban environments and should be considered. Two surveys were conducted to determine the reasons for the lack of integration of biological control into weed management programmes. The surveys showed that there is a gap between research and implementation as a result of poor communication, non-supporting institutional arrangements and a lack of appropriate capacity and skills at the implementation level. Recommendations were offered to address these issues.
- Full Text:
- Date Issued: 2014
Drivers of macrophyte assemblages in South African freshwater systems
- Authors: Martin, Grant Douglas
- Date: 2013
- Subjects: Freshwater plants -- South Africa Aquatic weeds -- South Africa Invasive plants -- South Africa Freshwater ecology -- South Africa Biotic communities -- South Africa Maximum entropy method Lagarosiphon major -- South Africa Phytophagous insects -- South Africa Hydrellia -- South Africa Parasitoids -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5621 , http://hdl.handle.net/10962/d1004127
- Description: Potentially damaging submerged invasive freshwater macrophytes have been identified in South African freshwater systems, but have received less attention than their floating counterparts. To ascertain the changes and effects that these species may have on macrophyte ecology, an understanding of the drivers of macrophyte assemblages is essential. The aims of this thesis were to investigate select abiotic and biotic factors driving introduction, establishment and spread of submerged macrophytes in South Africa. Surveys on the status of submerged plant species in South Africa were conducted to find out the distribution and diversity of the species present, imported to, and traded in South Africa. Numerous submerged indigenous and invasive macrophyte locality records were collected during field surveys, of which many were first time records. Pet stores and aquarist trading activities were identified as potential vectors for the spread of submerged macrophytes through online surveys and personal interviews. These results highlighted the potential these species have for continuing to enter, and spread within South African water bodies. Maximum Entropy (MAXENT) is a general-purpose method used to predict or infer distributions from incomplete information, and was used here to predict areas suitable for the establishment of five of these invasive macrophytes. Many systems throughout South Africa, particularly those in the subtropical coastal regions, were found to be climatically suitable for the establishment of Elodea canadensis Michx., Egeria densa Planch., Hydrilla verticillata (L.f.) Royle (all Hydrocharitaceae), Myriophyllum spicatum L. (Haloragaceae), and Cabomba caroliniana Gray (Cabombaceae). Despite the high probability of invasion, facilitated by vectors and suitable climate, South Africa’s rich indigenous submerged aquatic flora may be preventing the establishment of these submerged invasive species. Studies on the competitive interactions between a common indigenous submerged macrophytes, Lagarosiphon major (Roxb.) (Hydrocharitaceae) and M.spicatum, an invasive native to Eurasia, were conducted to ascertain which conditions influence competitive superiority. High sediment nutrient conditions significantly increased the growth rate and competitive ability of both species, while clay sediments significantly increased the competitive ability of L. major over M. spicatum, but sandy sediments improved the competitive ability of M. spicatum. These results highlighted the dynamic changes in competition between submerged species driven by abiotic factors, but did not take into consideration the effect that herbivory, a biotic factor, could have on competition between the two species. The effect of herbivory by phytophagous insects of submerged plant species has been regarded as negligible. To find out what this effect is, multiple field surveys were undertaken throughout South Africa to find natural enemies of indigenous Lagarosiphon species with the aim of identifying such species, and quantifying their influence on plant growth dynamics. Several new phytophagous species were recorded for the first time. An ephydrid fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae) was ascertained to be the most ubiquitous and abundant species associated with L. major in South Africa. The influence of herbivory by this fly on the competitive ability of L. major in the presence of M. spicatum was investigated using an inverse linear model, which showed that herbivory by H. lagarosiphon reduced the competitive ability of L. major by approximately five times in favour of M. spicatum. This study served to highlight the importance of herbivory as a driver of submerged aquatic plant dynamics. Current ecological theory emphasises the importance of investigating beyond plant-herbivore interactions, by including multitrophic interactions in community dynamics. Therefore, the potential of parasitism by a parasitoid wasp, Chaenusa luteostigma sp. n. Achterberg (Hymenoptera: Braconidae: Alysiinae) on H. lagarosiphon to shift the competitive interactions between the two plant species was also examined. The addition of the parasitoid reduced the effect of herbivory by the fly on L. major by half, thereby shifting the competitive balance in favour of L. major over M. spicatum. This study provides valuable insight into a selection of drivers of submerged macrophyte assemblages of South Africa. It highlights the precarious position of South African freshwater systems with regard to the potential invasion by damaging submerged invasive species. It also provides interesting insights into the effect of competition, herbivory and parasitism on the establishment and spread of species within submerged freshwater systems. Understanding the different influences could assist managers and policy makers to make validated decisions ensuring the integrity of South African freshwater systems.
- Full Text:
- Date Issued: 2013
- Authors: Martin, Grant Douglas
- Date: 2013
- Subjects: Freshwater plants -- South Africa Aquatic weeds -- South Africa Invasive plants -- South Africa Freshwater ecology -- South Africa Biotic communities -- South Africa Maximum entropy method Lagarosiphon major -- South Africa Phytophagous insects -- South Africa Hydrellia -- South Africa Parasitoids -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5621 , http://hdl.handle.net/10962/d1004127
- Description: Potentially damaging submerged invasive freshwater macrophytes have been identified in South African freshwater systems, but have received less attention than their floating counterparts. To ascertain the changes and effects that these species may have on macrophyte ecology, an understanding of the drivers of macrophyte assemblages is essential. The aims of this thesis were to investigate select abiotic and biotic factors driving introduction, establishment and spread of submerged macrophytes in South Africa. Surveys on the status of submerged plant species in South Africa were conducted to find out the distribution and diversity of the species present, imported to, and traded in South Africa. Numerous submerged indigenous and invasive macrophyte locality records were collected during field surveys, of which many were first time records. Pet stores and aquarist trading activities were identified as potential vectors for the spread of submerged macrophytes through online surveys and personal interviews. These results highlighted the potential these species have for continuing to enter, and spread within South African water bodies. Maximum Entropy (MAXENT) is a general-purpose method used to predict or infer distributions from incomplete information, and was used here to predict areas suitable for the establishment of five of these invasive macrophytes. Many systems throughout South Africa, particularly those in the subtropical coastal regions, were found to be climatically suitable for the establishment of Elodea canadensis Michx., Egeria densa Planch., Hydrilla verticillata (L.f.) Royle (all Hydrocharitaceae), Myriophyllum spicatum L. (Haloragaceae), and Cabomba caroliniana Gray (Cabombaceae). Despite the high probability of invasion, facilitated by vectors and suitable climate, South Africa’s rich indigenous submerged aquatic flora may be preventing the establishment of these submerged invasive species. Studies on the competitive interactions between a common indigenous submerged macrophytes, Lagarosiphon major (Roxb.) (Hydrocharitaceae) and M.spicatum, an invasive native to Eurasia, were conducted to ascertain which conditions influence competitive superiority. High sediment nutrient conditions significantly increased the growth rate and competitive ability of both species, while clay sediments significantly increased the competitive ability of L. major over M. spicatum, but sandy sediments improved the competitive ability of M. spicatum. These results highlighted the dynamic changes in competition between submerged species driven by abiotic factors, but did not take into consideration the effect that herbivory, a biotic factor, could have on competition between the two species. The effect of herbivory by phytophagous insects of submerged plant species has been regarded as negligible. To find out what this effect is, multiple field surveys were undertaken throughout South Africa to find natural enemies of indigenous Lagarosiphon species with the aim of identifying such species, and quantifying their influence on plant growth dynamics. Several new phytophagous species were recorded for the first time. An ephydrid fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae) was ascertained to be the most ubiquitous and abundant species associated with L. major in South Africa. The influence of herbivory by this fly on the competitive ability of L. major in the presence of M. spicatum was investigated using an inverse linear model, which showed that herbivory by H. lagarosiphon reduced the competitive ability of L. major by approximately five times in favour of M. spicatum. This study served to highlight the importance of herbivory as a driver of submerged aquatic plant dynamics. Current ecological theory emphasises the importance of investigating beyond plant-herbivore interactions, by including multitrophic interactions in community dynamics. Therefore, the potential of parasitism by a parasitoid wasp, Chaenusa luteostigma sp. n. Achterberg (Hymenoptera: Braconidae: Alysiinae) on H. lagarosiphon to shift the competitive interactions between the two plant species was also examined. The addition of the parasitoid reduced the effect of herbivory by the fly on L. major by half, thereby shifting the competitive balance in favour of L. major over M. spicatum. This study provides valuable insight into a selection of drivers of submerged macrophyte assemblages of South Africa. It highlights the precarious position of South African freshwater systems with regard to the potential invasion by damaging submerged invasive species. It also provides interesting insights into the effect of competition, herbivory and parasitism on the establishment and spread of species within submerged freshwater systems. Understanding the different influences could assist managers and policy makers to make validated decisions ensuring the integrity of South African freshwater systems.
- Full Text:
- Date Issued: 2013
A spatial and temporal analysis of the changes in alien macrophyte communities and a baseline assessment of the macroinvertebrates associated with Eurasian watermilfoil, Myriophyllum spicatum L. (Haloragaceae) in the Vaal River
- Authors: Fordham, Colin Justin
- Date: 2012
- Subjects: Water hyacinth -- Control -- South Africa , Aquatic weeds -- Control -- South Africa , Eurasian watermilfoil -- South Africa , Water quality management -- South Africa , Freshwater invertebrates -- Ecology -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5767 , http://hdl.handle.net/10962/d1005455 , Water hyacinth -- Control -- South Africa , Aquatic weeds -- Control -- South Africa , Eurasian watermilfoil -- South Africa , Water quality management -- South Africa , Freshwater invertebrates -- Ecology -- South Africa
- Description: The majority of South Africa’s fresh water (lotic and lentic), is eutrophic and this has resulted in water hyacinth, Eichhornia crassipes (C.Mart.) Solms. (Pontederiaceae) becoming South Africa’s most damaging aquatic macrophyte. Recently however, concerns have also been voiced over the presence of highly invasive submerged macrophyte species, such as Eurasian water-milfoil, Myriophyllum spicatum L. (Haloragaceae) in the Vaal River. Interaction studies between floating and submerged macrophytes have shown that floating macrophyte dominance restricts light penetration into the water column shading out submerged macrophytes while submerged macrophyte dominance reduces nutrient availability in the water column limiting floating macrophyte growth. This cycle ensures that these species cannot coexist in the same habitat for extended periods of time. The aims of this thesis were to: 1. Investigate changes in the historical and current macrophyte dominance in the Vaal River 2. Determine whether these changes could be attributed to stochastic events, such as floods and herbicide control measures. 3. The physio-chemical conditions of the water column, and whether pressure from herbivory by macroinvertebrates had possibly influenced Eurasian water-milfoil’s ability to dominate. Spatial and temporal analysis of satellite imagery revealed that water hyacinth and submerged macrophyte species dominated different regions of the study area over different periods of time from 2006 to 2010. This was significantly correlated with nitrate concentrations of the water column. One of the lower Vaal River Water Management Areas (WMA) had changed from a water hyacinth dominated state in 2006 to an alternative submerged macrophyte dominated stable state in 2008. It was concluded that this change could be attributed to: a stochastic flooding event in 2006; perturbation from integrated control measures implemented against water hyacinth; and low nitrate concentrations of the WMA. The lack of any substantial macroinvertebrate herbivory pressure or control measures implemented against Eurasian water-milfoil, compared to similar surveys conducted in the U.S.A. and its native range in Eurasia was shown to contribute to its dominance. Future successful integrated control programmes, including biological control against Eurasian water-milfoil, could provide the perturbation required to restore the ecosystem. However, without the reduction in nitrate concentration levels, water hyacinth will remain the dominant stable state of the rest of the Vaal River.
- Full Text:
- Date Issued: 2012
- Authors: Fordham, Colin Justin
- Date: 2012
- Subjects: Water hyacinth -- Control -- South Africa , Aquatic weeds -- Control -- South Africa , Eurasian watermilfoil -- South Africa , Water quality management -- South Africa , Freshwater invertebrates -- Ecology -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5767 , http://hdl.handle.net/10962/d1005455 , Water hyacinth -- Control -- South Africa , Aquatic weeds -- Control -- South Africa , Eurasian watermilfoil -- South Africa , Water quality management -- South Africa , Freshwater invertebrates -- Ecology -- South Africa
- Description: The majority of South Africa’s fresh water (lotic and lentic), is eutrophic and this has resulted in water hyacinth, Eichhornia crassipes (C.Mart.) Solms. (Pontederiaceae) becoming South Africa’s most damaging aquatic macrophyte. Recently however, concerns have also been voiced over the presence of highly invasive submerged macrophyte species, such as Eurasian water-milfoil, Myriophyllum spicatum L. (Haloragaceae) in the Vaal River. Interaction studies between floating and submerged macrophytes have shown that floating macrophyte dominance restricts light penetration into the water column shading out submerged macrophytes while submerged macrophyte dominance reduces nutrient availability in the water column limiting floating macrophyte growth. This cycle ensures that these species cannot coexist in the same habitat for extended periods of time. The aims of this thesis were to: 1. Investigate changes in the historical and current macrophyte dominance in the Vaal River 2. Determine whether these changes could be attributed to stochastic events, such as floods and herbicide control measures. 3. The physio-chemical conditions of the water column, and whether pressure from herbivory by macroinvertebrates had possibly influenced Eurasian water-milfoil’s ability to dominate. Spatial and temporal analysis of satellite imagery revealed that water hyacinth and submerged macrophyte species dominated different regions of the study area over different periods of time from 2006 to 2010. This was significantly correlated with nitrate concentrations of the water column. One of the lower Vaal River Water Management Areas (WMA) had changed from a water hyacinth dominated state in 2006 to an alternative submerged macrophyte dominated stable state in 2008. It was concluded that this change could be attributed to: a stochastic flooding event in 2006; perturbation from integrated control measures implemented against water hyacinth; and low nitrate concentrations of the WMA. The lack of any substantial macroinvertebrate herbivory pressure or control measures implemented against Eurasian water-milfoil, compared to similar surveys conducted in the U.S.A. and its native range in Eurasia was shown to contribute to its dominance. Future successful integrated control programmes, including biological control against Eurasian water-milfoil, could provide the perturbation required to restore the ecosystem. However, without the reduction in nitrate concentration levels, water hyacinth will remain the dominant stable state of the rest of the Vaal River.
- Full Text:
- Date Issued: 2012
The impact on biodiversity, and integrated control, of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) on the Lake Nsezi - Nseleni River system
- Authors: Jones, Roy William
- Date: 2009
- Subjects: Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5711 , http://hdl.handle.net/10962/d1005397 , Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), a free floating aquatic plant was discovered by C. von Martius in 1823 in Brazil. It is believed to have been introduced into South Africa, as an ornamental plant, in 1908 to the Cape Province and Natal. Since its introduction, water hyacinth has spread throughout South Africa to the detriment of all aquatic systems that it has been introduced to directly or indirectly. The weed was first positively identified on the Nseleni and Mposa rivers on the Nseleni Nature Reserve which is a protected area near Richards Bay in KwaZulu- Natal in 1982 and formed a 100% cover of the river by 1983. An integrated management plan was implemented in 1995 and resulted in a reduction of the weed from a 100% cover to less than 20% cover in 5 years. The keys to success of the water hyacinth integrated management plan, presented here, were finding the source of the weed, mapping the extent of the water hyacinth infestation, identifying sources of nutrient pollution, appointing a champion to drive the programme, dividing the river into management units, consultation with interested and affected parties, judicious use of herbicides and biological control and a commitment to follow-up. This study further showed that water hyacinth on the Nseleni and Mposa river systems had a negative impact on the biodiversity of the protected area and the control of water hyacinth resulted in the recovery of the benthic invertebrate, amphibian, reptile, fish and avian fauna. The implementation of this integrated management plan was very cost-effective and serves as a model approach to the control of water hyacinth in both South Africa and the rest of the world.
- Full Text:
- Date Issued: 2009
- Authors: Jones, Roy William
- Date: 2009
- Subjects: Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5711 , http://hdl.handle.net/10962/d1005397 , Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), a free floating aquatic plant was discovered by C. von Martius in 1823 in Brazil. It is believed to have been introduced into South Africa, as an ornamental plant, in 1908 to the Cape Province and Natal. Since its introduction, water hyacinth has spread throughout South Africa to the detriment of all aquatic systems that it has been introduced to directly or indirectly. The weed was first positively identified on the Nseleni and Mposa rivers on the Nseleni Nature Reserve which is a protected area near Richards Bay in KwaZulu- Natal in 1982 and formed a 100% cover of the river by 1983. An integrated management plan was implemented in 1995 and resulted in a reduction of the weed from a 100% cover to less than 20% cover in 5 years. The keys to success of the water hyacinth integrated management plan, presented here, were finding the source of the weed, mapping the extent of the water hyacinth infestation, identifying sources of nutrient pollution, appointing a champion to drive the programme, dividing the river into management units, consultation with interested and affected parties, judicious use of herbicides and biological control and a commitment to follow-up. This study further showed that water hyacinth on the Nseleni and Mposa river systems had a negative impact on the biodiversity of the protected area and the control of water hyacinth resulted in the recovery of the benthic invertebrate, amphibian, reptile, fish and avian fauna. The implementation of this integrated management plan was very cost-effective and serves as a model approach to the control of water hyacinth in both South Africa and the rest of the world.
- Full Text:
- Date Issued: 2009