A grid based approach for the control and recall of the properties of IEEE 1394 audio devices
- Authors: Foulkes, Philip James
- Date: 2009
- Subjects: IEEE 1394 (Standard) , Computer sound processing , Digital communications , Local area networks (Computer networks) , Sound -- Recording and reproducing -- Digital techniques , Computational grids (Computer systems)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4594 , http://hdl.handle.net/10962/d1004836 , IEEE 1394 (Standard) , Computer sound processing , Digital communications , Local area networks (Computer networks) , Sound -- Recording and reproducing -- Digital techniques , Computational grids (Computer systems)
- Description: The control of modern audio studios is complex. Audio mixing desks have grown to the point where they contain thousands of parameters. The control surfaces of these devices do not reflect the routing and signal processing capabilities that the devices are capable of. Software audio mixing desk editors have been developed that allow for the remote control of these devices, but their graphical user interfaces retain the complexities of the audio mixing desk that they represent. In this thesis, we propose a grid approach to audio mixing. The developed grid audio mixing desk editor represents an audio mixing desk as a series of graphical routing matrices. These routing matrices expose the various signal processing points and signal flows that exist within an audio mixing desk. The routing matrices allow for audio signals to be routed within the device, and allow for the device’s parameters to be adjusted by selecting the appropriate signal processing points. With the use of the programming interfaces that are defined as part of the Studio Connections – Total Recall SDK, the audio mixing desk editor was integrated with compatible DAW applications to provide persistence of audio mixing desk parameter states. Many audio studios currently use digital networks to connect audio devices together. Audio and control signals are patched between devices through the use of software patchbays that run on computers. We propose a double grid-based FireWire patchbay aimed to simplify the patching of signals between audio devices on a FireWire network. The FireWire patchbay was implemented in such a way such that it can host software device editors that are Studio Connections compatible. This has allowed software device editors to be associated with the devices that are represented on the FireWire patchbay, thus allowing for studio wide control from a single application. The double grid-based patchbay was implemented such that it can be hosted by compatible DAW applications. Through this, the double grid-based patchbay application is able to provide the DAW application with the state of the parameters of the devices in a studio, as well as the connections between them. The DAW application may save this state data to its native song files. This state data may be passed back to the double grid-based patchbay when the song file is reloaded at a later stage. This state data may then be used by the patchbay to restore the parameters of the patchbay and its device editors to a previous state. This restored state may then be transferred to the hardware devices being represented by the patchbay.
- Full Text:
- Date Issued: 2009
- Authors: Foulkes, Philip James
- Date: 2009
- Subjects: IEEE 1394 (Standard) , Computer sound processing , Digital communications , Local area networks (Computer networks) , Sound -- Recording and reproducing -- Digital techniques , Computational grids (Computer systems)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4594 , http://hdl.handle.net/10962/d1004836 , IEEE 1394 (Standard) , Computer sound processing , Digital communications , Local area networks (Computer networks) , Sound -- Recording and reproducing -- Digital techniques , Computational grids (Computer systems)
- Description: The control of modern audio studios is complex. Audio mixing desks have grown to the point where they contain thousands of parameters. The control surfaces of these devices do not reflect the routing and signal processing capabilities that the devices are capable of. Software audio mixing desk editors have been developed that allow for the remote control of these devices, but their graphical user interfaces retain the complexities of the audio mixing desk that they represent. In this thesis, we propose a grid approach to audio mixing. The developed grid audio mixing desk editor represents an audio mixing desk as a series of graphical routing matrices. These routing matrices expose the various signal processing points and signal flows that exist within an audio mixing desk. The routing matrices allow for audio signals to be routed within the device, and allow for the device’s parameters to be adjusted by selecting the appropriate signal processing points. With the use of the programming interfaces that are defined as part of the Studio Connections – Total Recall SDK, the audio mixing desk editor was integrated with compatible DAW applications to provide persistence of audio mixing desk parameter states. Many audio studios currently use digital networks to connect audio devices together. Audio and control signals are patched between devices through the use of software patchbays that run on computers. We propose a double grid-based FireWire patchbay aimed to simplify the patching of signals between audio devices on a FireWire network. The FireWire patchbay was implemented in such a way such that it can host software device editors that are Studio Connections compatible. This has allowed software device editors to be associated with the devices that are represented on the FireWire patchbay, thus allowing for studio wide control from a single application. The double grid-based patchbay was implemented such that it can be hosted by compatible DAW applications. Through this, the double grid-based patchbay application is able to provide the DAW application with the state of the parameters of the devices in a studio, as well as the connections between them. The DAW application may save this state data to its native song files. This state data may be passed back to the double grid-based patchbay when the song file is reloaded at a later stage. This state data may then be used by the patchbay to restore the parameters of the patchbay and its device editors to a previous state. This restored state may then be transferred to the hardware devices being represented by the patchbay.
- Full Text:
- Date Issued: 2009
An investigation into the hardware abstraction layer of the plural node architecture for IEEE 1394 audio devices
- Authors: Chigwamba, Nyasha
- Date: 2009
- Subjects: IEEE 1394 (Standard) , Digital communications , Computer sound processing , Local area networks (Computer networks) , Computer network architectures , Sound -- Recording and reproducing -- Digital techniques
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4598 , http://hdl.handle.net/10962/d1004841 , IEEE 1394 (Standard) , Digital communications , Computer sound processing , Local area networks (Computer networks) , Computer network architectures , Sound -- Recording and reproducing -- Digital techniques
- Description: Digital audio network technologies are becoming more prevalent in audio related environments. Yamaha Corporation has created a digital audio network solution, named mLAN (music Local Area Network), that uses IEEE 1394 as its underlying network technology. IEEE 1394 is a digital network technology that is specifically designed for real-time multimedia data transmission. The second generation of mLAN is based on the Plural Node Architecture, where the control of audio and MIDI routings between IEEE 1394 devices is split between two node types, namely an Enabler and a Transporter. The Transporter typically resides in an IEEE 1394 device and is solely responsible for transmission and reception of audio or MIDI data. The Enabler typically resides in a workstation and exposes an abstract representation of audio or MIDI plugs on each Transporter to routing control applications. The Enabler is responsible for configuring audio and MIDI routings between plugs on different Transporters. A Hardware Abstraction Layer (HAL) within the Enabler allows it to uniformly communicate with Transporters that are created by various vendors. A plug-in mechanism is used to provide this capability. When vendors create Transporters, they also create device-specific plug-ins for the Enabler. These plug-ins are created against a Transporter HAL Application Programming Interface (API) that defines methods to access the capabilities of Transporters. An Open Generic Transporter (OGT) guideline document which models all the capabilities of Transporters has been produced. These guidelines make it possible for manufacturers to create Transporters that make use of a common plug-in, although based on different hardware architectures. The introduction of the OGT concept has revealed additional Transporter capabilities that are not incorporated in the existing Transporter HAL API. This has led to the underutilisation of OGT capabilities. The main goals of this investigation have been to improve the Enabler’s plug-in mechanism, and to incorporate the additional capabilities that have been revealed by the OGT into the Transporter HAL API. We propose a new plug-in mechanism, and a new Transporter HAL API that fully utilises both the additional capabilities revealed by the OGT and the capabilities of existing Transporters.
- Full Text:
- Date Issued: 2009
- Authors: Chigwamba, Nyasha
- Date: 2009
- Subjects: IEEE 1394 (Standard) , Digital communications , Computer sound processing , Local area networks (Computer networks) , Computer network architectures , Sound -- Recording and reproducing -- Digital techniques
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4598 , http://hdl.handle.net/10962/d1004841 , IEEE 1394 (Standard) , Digital communications , Computer sound processing , Local area networks (Computer networks) , Computer network architectures , Sound -- Recording and reproducing -- Digital techniques
- Description: Digital audio network technologies are becoming more prevalent in audio related environments. Yamaha Corporation has created a digital audio network solution, named mLAN (music Local Area Network), that uses IEEE 1394 as its underlying network technology. IEEE 1394 is a digital network technology that is specifically designed for real-time multimedia data transmission. The second generation of mLAN is based on the Plural Node Architecture, where the control of audio and MIDI routings between IEEE 1394 devices is split between two node types, namely an Enabler and a Transporter. The Transporter typically resides in an IEEE 1394 device and is solely responsible for transmission and reception of audio or MIDI data. The Enabler typically resides in a workstation and exposes an abstract representation of audio or MIDI plugs on each Transporter to routing control applications. The Enabler is responsible for configuring audio and MIDI routings between plugs on different Transporters. A Hardware Abstraction Layer (HAL) within the Enabler allows it to uniformly communicate with Transporters that are created by various vendors. A plug-in mechanism is used to provide this capability. When vendors create Transporters, they also create device-specific plug-ins for the Enabler. These plug-ins are created against a Transporter HAL Application Programming Interface (API) that defines methods to access the capabilities of Transporters. An Open Generic Transporter (OGT) guideline document which models all the capabilities of Transporters has been produced. These guidelines make it possible for manufacturers to create Transporters that make use of a common plug-in, although based on different hardware architectures. The introduction of the OGT concept has revealed additional Transporter capabilities that are not incorporated in the existing Transporter HAL API. This has led to the underutilisation of OGT capabilities. The main goals of this investigation have been to improve the Enabler’s plug-in mechanism, and to incorporate the additional capabilities that have been revealed by the OGT into the Transporter HAL API. We propose a new plug-in mechanism, and a new Transporter HAL API that fully utilises both the additional capabilities revealed by the OGT and the capabilities of existing Transporters.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »