An investigation into the bacterial communities associated with pyrroloiminoquinone-producing South African latrunculid sponges
- Authors: Hilliar, Storm Hannah
- Date: 2018
- Subjects: Sponges South Africa Algoa Bay , Betaproteobacteria , Spirochaeta , Symbiosis , Bacterial communities
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62112 , vital:28128
- Description: Marine sponges belonging to the family Latrunculiidae are known for their production of cytotoxic pyrroloiminoquinone alkaloids and the South African coast provides a unique environment for the exploitation of these potent bioactive compounds. The isolation of structurally similar pyrroloiminoquinone compounds from unrelated, non poriferan sources has led to the suggestion that South African latrunculid pyrroloiminoquinones may be secondary metabolites produced by sponge associated microbial symbionts. Previous studies investigating the bacterial communities of South African latrunculid sponges have shown the conservation of distinct microbial populations with unusual bacterial taxa dominated by a novel betaproteobacterial and spirochete species. This study describes the further investigation into these associated bacterial communities, their conservation and sponge microbiome comparisons across spatial, temporal and environmental scales. The bacterial communities associated with seven latrunculid species representing three genera (Tsitsikamma, Cyclacanthia and Latrunculia) were characterized as well as a Mycale and Tethya rubra species. Latrunculid sponge microbiomes were significantly different from those associated with sympatric outlier sponge species and the surrounding environment. The bacterial communities associated with latrunculid sponges appear host specific with the conservation of two dominant bacterial symbionts which mirror the phylogeny of their host species. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Hilliar, Storm Hannah
- Date: 2018
- Subjects: Sponges South Africa Algoa Bay , Betaproteobacteria , Spirochaeta , Symbiosis , Bacterial communities
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62112 , vital:28128
- Description: Marine sponges belonging to the family Latrunculiidae are known for their production of cytotoxic pyrroloiminoquinone alkaloids and the South African coast provides a unique environment for the exploitation of these potent bioactive compounds. The isolation of structurally similar pyrroloiminoquinone compounds from unrelated, non poriferan sources has led to the suggestion that South African latrunculid pyrroloiminoquinones may be secondary metabolites produced by sponge associated microbial symbionts. Previous studies investigating the bacterial communities of South African latrunculid sponges have shown the conservation of distinct microbial populations with unusual bacterial taxa dominated by a novel betaproteobacterial and spirochete species. This study describes the further investigation into these associated bacterial communities, their conservation and sponge microbiome comparisons across spatial, temporal and environmental scales. The bacterial communities associated with seven latrunculid species representing three genera (Tsitsikamma, Cyclacanthia and Latrunculia) were characterized as well as a Mycale and Tethya rubra species. Latrunculid sponge microbiomes were significantly different from those associated with sympatric outlier sponge species and the surrounding environment. The bacterial communities associated with latrunculid sponges appear host specific with the conservation of two dominant bacterial symbionts which mirror the phylogeny of their host species. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Exploring para-thiophenols to expand the SAR of antimalarial 3-indolylethanones
- Authors: Chisango, Ruramai Lissa
- Date: 2018
- Subjects: Antimalarials , Malaria Chemotherapy , Thiols , Plasmodium falciparum , Blood-brain barrier
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/63515 , vital:28428
- Description: According to the WHO, malaria is responsible for over half a million deaths annually especially in populations from disadvantaged settings. Although there has been a documented improvement in the mortality rates, malaria has proved to be a global emergency. Mostly affecting the poor population, this disease is perpetuating a vicious cycle of poverty in the developing world as current preventive measures are not adequate unless adopted in addition to effective treatment. However, there has been a worldwide increase in resistance to available treatment which presents a need for novel, affordable treatment. A study conducted in our laboratory identified two hit thiophenol containing compounds 2.24 and 2.25. These molecules provided initial insight into the SAR and potential pharmacophore of this class of compounds. We decided to further explore these compounds by making bioisosteric replacements to optimize the structure as we monitor the effect of these modifications on the anti-plasmodial activity. The synthetic pathway to form the target compounds of our study comprised of three steps which were initiated by the Friedel-Crafts acetylation of the indoles resulting in compounds 3.5 - 3.7. A bromination step followed which yielded the -bromo ketones (3.8 - 3.11). Some of the thiophenols (3.14 and 3.16) were not readily available in our laboratory and so were synthesized for the final synthetic step. This step involved the nucleophilic displacement of the -bromine to generate the -aryl substituted 3-indolylethanones (3.17 - 3.27). The thioethers displayed improved antimalarial activity from 2.24 and 2.25 against the chloroquine sensitive 3D7 Plasmodium falciparum strain. In addition, these compounds were non-toxic against HeLa cells which indicated this potential novel class of antimalarials is selective for the malaria parasite as hypothesized in the previous study conducted in our laboratory. In an attempt to predict the bioavailability of some of our compounds, in silico studies were conducted revealing that these compounds could be passively absorbed by the gastrointestinal tract, a positive result for bioavailability purposes. However, results from these studies indicate that modifications of these compounds would be necessary to allow for permeation through the blood brain barrier (BBB) for instances when the patient has cerebral malaria. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2018
- Full Text:
- Date Issued: 2018
- Authors: Chisango, Ruramai Lissa
- Date: 2018
- Subjects: Antimalarials , Malaria Chemotherapy , Thiols , Plasmodium falciparum , Blood-brain barrier
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/63515 , vital:28428
- Description: According to the WHO, malaria is responsible for over half a million deaths annually especially in populations from disadvantaged settings. Although there has been a documented improvement in the mortality rates, malaria has proved to be a global emergency. Mostly affecting the poor population, this disease is perpetuating a vicious cycle of poverty in the developing world as current preventive measures are not adequate unless adopted in addition to effective treatment. However, there has been a worldwide increase in resistance to available treatment which presents a need for novel, affordable treatment. A study conducted in our laboratory identified two hit thiophenol containing compounds 2.24 and 2.25. These molecules provided initial insight into the SAR and potential pharmacophore of this class of compounds. We decided to further explore these compounds by making bioisosteric replacements to optimize the structure as we monitor the effect of these modifications on the anti-plasmodial activity. The synthetic pathway to form the target compounds of our study comprised of three steps which were initiated by the Friedel-Crafts acetylation of the indoles resulting in compounds 3.5 - 3.7. A bromination step followed which yielded the -bromo ketones (3.8 - 3.11). Some of the thiophenols (3.14 and 3.16) were not readily available in our laboratory and so were synthesized for the final synthetic step. This step involved the nucleophilic displacement of the -bromine to generate the -aryl substituted 3-indolylethanones (3.17 - 3.27). The thioethers displayed improved antimalarial activity from 2.24 and 2.25 against the chloroquine sensitive 3D7 Plasmodium falciparum strain. In addition, these compounds were non-toxic against HeLa cells which indicated this potential novel class of antimalarials is selective for the malaria parasite as hypothesized in the previous study conducted in our laboratory. In an attempt to predict the bioavailability of some of our compounds, in silico studies were conducted revealing that these compounds could be passively absorbed by the gastrointestinal tract, a positive result for bioavailability purposes. However, results from these studies indicate that modifications of these compounds would be necessary to allow for permeation through the blood brain barrier (BBB) for instances when the patient has cerebral malaria. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2018
- Full Text:
- Date Issued: 2018
Yeast-baculovirus synergism: investigating mixed infections for improved management of the false codling moth, Thaumatotibia leucotreta
- Authors: Van der Merwe, Marcel
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Van der Merwe, Marcel
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »