Euendolithic Infestation of Mussel Shells Indirectly Improves the Thermal Buffering Offered by Mussel Beds to Associated Molluscs, but One Size Does Not Fit All
- Dievart, Alexia M, McQuaid, Christopher D, Zardi, Gerardo I, Nicastro, Katy R, Froneman, P William
- Authors: Dievart, Alexia M , McQuaid, Christopher D , Zardi, Gerardo I , Nicastro, Katy R , Froneman, P William
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/465754 , vital:76638 , https://doi.org/10.3390/d15020239
- Description: Mussel beds form important intertidal matrices that provide thermal buffering to associated invertebrate communities, especially under stressful environmental conditions. Mussel shells are often colonized by photoautotrophic euendoliths, which have indirect conditional beneficial thermoregulatory effects on both solitary and aggregated mussels by increasing the albedo of the shell. We investigated whether euendolithic infestation of artificial mussel beds (Perna perna) influences the body temperatures of four associated mollusc species during simulated periods of emersion, using shell temperature obtained via non-invasive infrared thermography as a proxy.
- Full Text:
- Date Issued: 2023
- Authors: Dievart, Alexia M , McQuaid, Christopher D , Zardi, Gerardo I , Nicastro, Katy R , Froneman, P William
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/465754 , vital:76638 , https://doi.org/10.3390/d15020239
- Description: Mussel beds form important intertidal matrices that provide thermal buffering to associated invertebrate communities, especially under stressful environmental conditions. Mussel shells are often colonized by photoautotrophic euendoliths, which have indirect conditional beneficial thermoregulatory effects on both solitary and aggregated mussels by increasing the albedo of the shell. We investigated whether euendolithic infestation of artificial mussel beds (Perna perna) influences the body temperatures of four associated mollusc species during simulated periods of emersion, using shell temperature obtained via non-invasive infrared thermography as a proxy.
- Full Text:
- Date Issued: 2023
Inter-and intra-specific trophic interactions of coastal delphinids off the eastern coast of South Africa inferred from stable isotope analysis
- Caputo, Michelle, Bouveroux, Thibaut, Van der Bank, Megan, Cliff, Geremy, Kiszka, Jeremy J, Froneman, P William, Plön, Stephanie
- Authors: Caputo, Michelle , Bouveroux, Thibaut , Van der Bank, Megan , Cliff, Geremy , Kiszka, Jeremy J , Froneman, P William , Plön, Stephanie
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/466545 , vital:76745 , https://doi.org/10.1016/j.marenvres.2022.105784
- Description: Dietary tracers, such as bulk stable carbon (δ13C) and nitrogen (δ15N) isotopes, can be used to investigate the trophic interactions of marine predators, which is useful to assess their ecological roles within communities. These tracers have also been used to elucidate population structure and substructure, which is critical for the better identification of management units for these species affected by a range of threats, particularly bycatch in fishing gears. Off eastern South Africa, large populations of Indo-Pacific bottlenose (Tursiops aduncus) and common dolphins (Delphinus delphis) co-occur and are thought to follow the pulses of shoaling sardines (Sardinops sagax) heading north-east in the austral winter. Here we used δ13C and δ15N to investigate the trophic interactions and define ecological units of these two species along a ≈800 km stretch of the east coast of South Africa, from Algoa Bay to the coast of KwaZulu-Natal. Common and bottlenose dolphin dietary niche overlapped by 39.7% overall in our study area, with the highest overlap occurring off the Wild Coast (40.7% at Hluleka).
- Full Text:
- Date Issued: 2022
- Authors: Caputo, Michelle , Bouveroux, Thibaut , Van der Bank, Megan , Cliff, Geremy , Kiszka, Jeremy J , Froneman, P William , Plön, Stephanie
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/466545 , vital:76745 , https://doi.org/10.1016/j.marenvres.2022.105784
- Description: Dietary tracers, such as bulk stable carbon (δ13C) and nitrogen (δ15N) isotopes, can be used to investigate the trophic interactions of marine predators, which is useful to assess their ecological roles within communities. These tracers have also been used to elucidate population structure and substructure, which is critical for the better identification of management units for these species affected by a range of threats, particularly bycatch in fishing gears. Off eastern South Africa, large populations of Indo-Pacific bottlenose (Tursiops aduncus) and common dolphins (Delphinus delphis) co-occur and are thought to follow the pulses of shoaling sardines (Sardinops sagax) heading north-east in the austral winter. Here we used δ13C and δ15N to investigate the trophic interactions and define ecological units of these two species along a ≈800 km stretch of the east coast of South Africa, from Algoa Bay to the coast of KwaZulu-Natal. Common and bottlenose dolphin dietary niche overlapped by 39.7% overall in our study area, with the highest overlap occurring off the Wild Coast (40.7% at Hluleka).
- Full Text:
- Date Issued: 2022
Dietary plasticity of two coastal dolphin species in the Benguela upwelling ecosystem
- Caputo, Michelle, Elwen, Simon, Gridley, Tess, Kohler, Sophie A, Roux, Jean-Paul, Froneman, P William, Kiszka, Jeremy J
- Authors: Caputo, Michelle , Elwen, Simon , Gridley, Tess , Kohler, Sophie A , Roux, Jean-Paul , Froneman, P William , Kiszka, Jeremy J
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467277 , vital:76847 , https://doi.org/10.3390/d14060431
- Description: Defining the trophic relationships of marine predators and their dietary preferences is essential in understanding their role and importance in ecosystems. Here we used stable isotope analysis of skin samples (δ 15 N values reflecting trophic level and δ 13 C values reflecting foraging habitat) to investigate resource partitioning and spatial differences of the feeding ecology of dusky dolphins Lagenorhynchus obscurus and Heaviside’s dolphins Cephalorhynchus heavisidii from 2 coastal study sites separated by 400 km along the coast of central (Walvis Bay) and southern (Lüderitz) Namibia in the Benguela upwelling ecosystem. Overall, isotopic niches of both predators were significantly different, indicating partitioning of resources and foraging habitats. Despite their smaller body size, Heaviside’s dolphins fed at a significantly higher trophic level than dusky dolphins. Stable isotope mixing models revealed that both species fed on high trophic level prey (ie large Merluccius spp., large Sufflogobius bibarbatus, and Trachurus t. capensis) at Walvis Bay. The diet of both dolphin species included smaller pelagic fish and squid at Lüderitz. Spatial differences highlight that Heaviside’s and dusky dolphins may exhibit dietary plasticity driven by prey availability, and that they likely form distinct population segments. Important prey for both dolphin species, specifically Merluccius spp. and T. t. capensis, are the main target of trawl fisheries in the Benguela upwelling ecosystem, highlighting potential resource overlap between dolphins and fisheries.
- Full Text:
- Date Issued: 2021
- Authors: Caputo, Michelle , Elwen, Simon , Gridley, Tess , Kohler, Sophie A , Roux, Jean-Paul , Froneman, P William , Kiszka, Jeremy J
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467277 , vital:76847 , https://doi.org/10.3390/d14060431
- Description: Defining the trophic relationships of marine predators and their dietary preferences is essential in understanding their role and importance in ecosystems. Here we used stable isotope analysis of skin samples (δ 15 N values reflecting trophic level and δ 13 C values reflecting foraging habitat) to investigate resource partitioning and spatial differences of the feeding ecology of dusky dolphins Lagenorhynchus obscurus and Heaviside’s dolphins Cephalorhynchus heavisidii from 2 coastal study sites separated by 400 km along the coast of central (Walvis Bay) and southern (Lüderitz) Namibia in the Benguela upwelling ecosystem. Overall, isotopic niches of both predators were significantly different, indicating partitioning of resources and foraging habitats. Despite their smaller body size, Heaviside’s dolphins fed at a significantly higher trophic level than dusky dolphins. Stable isotope mixing models revealed that both species fed on high trophic level prey (ie large Merluccius spp., large Sufflogobius bibarbatus, and Trachurus t. capensis) at Walvis Bay. The diet of both dolphin species included smaller pelagic fish and squid at Lüderitz. Spatial differences highlight that Heaviside’s and dusky dolphins may exhibit dietary plasticity driven by prey availability, and that they likely form distinct population segments. Important prey for both dolphin species, specifically Merluccius spp. and T. t. capensis, are the main target of trawl fisheries in the Benguela upwelling ecosystem, highlighting potential resource overlap between dolphins and fisheries.
- Full Text:
- Date Issued: 2021
Prey and predator density‐dependent interactions under different water volumes
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Sentis, Arnaud, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Sentis, Arnaud , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466957 , vital:76802 , https://doi.org/10.1002/ece3.7503
- Description: Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator–prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator–predator interference effects.
- Full Text:
- Date Issued: 2021
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Sentis, Arnaud , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466957 , vital:76802 , https://doi.org/10.1002/ece3.7503
- Description: Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator–prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator–predator interference effects.
- Full Text:
- Date Issued: 2021
Alternative prey impedes the efficacy of a natural enemy of mosquitoes
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Coughlan, Neil E, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Coughlan, Neil E , Dick, Jaimie T A
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467148 , vital:76831 , https://doi.org/10.1016/j.biocontrol.2019.104146
- Description: Adaptive foraging behaviour in the presence of multiple prey types may mediate stability to predator-prey relationships. For biological control agents, the presence of alternative prey may thus reduce ecological impacts towards target organisms, presenting a key challenge to the derivation of agent efficacies. Quantifications of non-target effects are especially important for generalist biocontrol agents in their regulation of pests, vectors and invasive species. We examined the predatory impact of the notonectid Anisops debilis towards larvae of the vector mosquito complex Culex pipiens in the presence of varying densities of alternative daphniid prey. Experimentally, we quantified functional responses of A. debilis towards target mosquito prey under different background daphniid compositions, and also tested for prey switching propensities by the notonectid predator.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Coughlan, Neil E , Dick, Jaimie T A
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467148 , vital:76831 , https://doi.org/10.1016/j.biocontrol.2019.104146
- Description: Adaptive foraging behaviour in the presence of multiple prey types may mediate stability to predator-prey relationships. For biological control agents, the presence of alternative prey may thus reduce ecological impacts towards target organisms, presenting a key challenge to the derivation of agent efficacies. Quantifications of non-target effects are especially important for generalist biocontrol agents in their regulation of pests, vectors and invasive species. We examined the predatory impact of the notonectid Anisops debilis towards larvae of the vector mosquito complex Culex pipiens in the presence of varying densities of alternative daphniid prey. Experimentally, we quantified functional responses of A. debilis towards target mosquito prey under different background daphniid compositions, and also tested for prey switching propensities by the notonectid predator.
- Full Text:
- Date Issued: 2020
Assessing sediment particle-size effects on benthic algal colonisation and total carbohydrate production
- Dalu, Tatenda, Cuthbert, Ross N, Chavalala, Tiyisani L, Froneman, P William, Wasserman, Ryan J
- Authors: Dalu, Tatenda , Cuthbert, Ross N , Chavalala, Tiyisani L , Froneman, P William , Wasserman, Ryan J
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466815 , vital:76789 , https://doi.org/10.1016/j.scitotenv.2019.136348
- Description: Increased sedimentation and siltation associated with anthropogenic environmental change may alter microbial biofilms and the carbohydrates they produce, with potential bottom-up effects in these ecosystems. The present study aimed to examine to what extent carbohydrate (associated with biofilm exopolymer) concentration and benthic algal biomass vary among different sediment types (size-structure categories) using a microcosm experiment conducted over a period of 28 days. Substrate treatment and time had a significant effect on the total chlorophyll-a concentrations, whilst a significant interaction was present in the case of total sediment carbohydrates. Total sediment carbohydrates did not relate significantly to chlorophyll-a concentrations overall, nor for any substrate treatments owing to a non-significant ‘chlorophyll-a × substrate’ interaction term. The diatom community characteristics across sediment sizes were unique for each treatment in our study, with unique dominant diatom taxa compositions within each sediment size class. The finest sediment particle-size (greater than 63 μm) may be the least stable, most likely due to lower binding. We anticipate that the current study findings will lead to a better understanding of how different sediment types due to sedimentation and siltation will impact on primary productivity and the composition of diatom communities in aquatic systems.
- Full Text:
- Date Issued: 2020
- Authors: Dalu, Tatenda , Cuthbert, Ross N , Chavalala, Tiyisani L , Froneman, P William , Wasserman, Ryan J
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466815 , vital:76789 , https://doi.org/10.1016/j.scitotenv.2019.136348
- Description: Increased sedimentation and siltation associated with anthropogenic environmental change may alter microbial biofilms and the carbohydrates they produce, with potential bottom-up effects in these ecosystems. The present study aimed to examine to what extent carbohydrate (associated with biofilm exopolymer) concentration and benthic algal biomass vary among different sediment types (size-structure categories) using a microcosm experiment conducted over a period of 28 days. Substrate treatment and time had a significant effect on the total chlorophyll-a concentrations, whilst a significant interaction was present in the case of total sediment carbohydrates. Total sediment carbohydrates did not relate significantly to chlorophyll-a concentrations overall, nor for any substrate treatments owing to a non-significant ‘chlorophyll-a × substrate’ interaction term. The diatom community characteristics across sediment sizes were unique for each treatment in our study, with unique dominant diatom taxa compositions within each sediment size class. The finest sediment particle-size (greater than 63 μm) may be the least stable, most likely due to lower binding. We anticipate that the current study findings will lead to a better understanding of how different sediment types due to sedimentation and siltation will impact on primary productivity and the composition of diatom communities in aquatic systems.
- Full Text:
- Date Issued: 2020
Benthic diatom-based indices and isotopic biomonitoring of nitrogen pollution in a warm temperate Austral river system
- Dalu, Tatenda, Cuthbert, Ross N, Taylor, Jonathan C, Magoro, Mandla L, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J
- Authors: Dalu, Tatenda , Cuthbert, Ross N , Taylor, Jonathan C , Magoro, Mandla L , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466917 , vital:76798 , https://doi.org/10.1016/j.scitotenv.2020.142452
- Description: Rivers are impacted by pollutants from anthropogenic activities such as urbanisation and agricultural practices. Whilst point source pollution has been widely studied and in some cases remediated, non-point pollutant sources remain pervasive, particularly in developing countries that lack economic and human specialist capacity. Monitoring of pollution levels in many regions is additionally challenged by a lack of robust indicators for nitrogen inputs, however, diatom community indices and analysis of variation in microphytobenthos (MBP) stable isotope analysis variations have potential. The present study investigates variations and utilities in benthic diatom indices and MPB δ15N along different river sections (n = 31) of an austral river between two seasons (wet and dry), testing for relationships with key environmental variables (physical, water and sediment), in the context of N monitoring. One hundred and eighteen diatom taxa belonging to 36 genera were identified, with physical (water flow), water (nitrate, P and total dissolved solids) and sediment (B, Ca, Cr, Na, N, P, SOM, Pb and Zn) variables correlating to one or more of the 12 diatom indices presented. In particular, Biological Diatom Index, Biological Index of Water Quality, Central Economic Community, Index of Artois-Picardie Diatom (IDAP) and Sládeček's Index were strongly explained by sediment variables, whilst Descy's Pollution Index and Schiefele and Schreiner's Index were explained by water and physical variables.
- Full Text:
- Date Issued: 2020
- Authors: Dalu, Tatenda , Cuthbert, Ross N , Taylor, Jonathan C , Magoro, Mandla L , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466917 , vital:76798 , https://doi.org/10.1016/j.scitotenv.2020.142452
- Description: Rivers are impacted by pollutants from anthropogenic activities such as urbanisation and agricultural practices. Whilst point source pollution has been widely studied and in some cases remediated, non-point pollutant sources remain pervasive, particularly in developing countries that lack economic and human specialist capacity. Monitoring of pollution levels in many regions is additionally challenged by a lack of robust indicators for nitrogen inputs, however, diatom community indices and analysis of variation in microphytobenthos (MBP) stable isotope analysis variations have potential. The present study investigates variations and utilities in benthic diatom indices and MPB δ15N along different river sections (n = 31) of an austral river between two seasons (wet and dry), testing for relationships with key environmental variables (physical, water and sediment), in the context of N monitoring. One hundred and eighteen diatom taxa belonging to 36 genera were identified, with physical (water flow), water (nitrate, P and total dissolved solids) and sediment (B, Ca, Cr, Na, N, P, SOM, Pb and Zn) variables correlating to one or more of the 12 diatom indices presented. In particular, Biological Diatom Index, Biological Index of Water Quality, Central Economic Community, Index of Artois-Picardie Diatom (IDAP) and Sládeček's Index were strongly explained by sediment variables, whilst Descy's Pollution Index and Schiefele and Schreiner's Index were explained by water and physical variables.
- Full Text:
- Date Issued: 2020
Common dolphin Delphinus delphis occurrence off the Wild Coast of South Africa
- Caputo, Michelle, Froneman, P William, Plön, Stephanie
- Authors: Caputo, Michelle , Froneman, P William , Plön, Stephanie
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467255 , vital:76845 , https://doi.org/10.2989/1814232X.2020.1841676
- Description: Despite their typical large group sizes, limited research exists on the occurrence of common dolphins Delphinus delphis because of the pelagic, offshore nature of this species and the lack of barriers to their movement in this environment. The main purpose of our study was to investigate the occurrence of common dolphins off the Wild Coast of South Africa (western Indian Ocean) and whether spatiotemporal and environmental conditions affected their encounter rate, relative abundance and mean group size. The annual sardine run in this region, during austral winter (May to July), is considered a main driver of dolphin occurrence; however, our boat-based surveys over the period 2014–2016 indicated that common dolphins occur and feed in this area outside of this time-frame. In terms of environmental factors, the largest group (∼1 250 animals) was found in the deepest waters. Additionally, at Hluleka, dolphins were observed primarily feeding, which could suggest that this coastal area is highly productive. As common dolphin distribution is thought to be correlated with prey distribution, our findings suggest that sufficient prey exists along the Wild Coast both during and outside the annual sardine run to sustain large groups of the dolphins and that their presence in the area is not solely a function of the sardine run.
- Full Text:
- Date Issued: 2020
- Authors: Caputo, Michelle , Froneman, P William , Plön, Stephanie
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467255 , vital:76845 , https://doi.org/10.2989/1814232X.2020.1841676
- Description: Despite their typical large group sizes, limited research exists on the occurrence of common dolphins Delphinus delphis because of the pelagic, offshore nature of this species and the lack of barriers to their movement in this environment. The main purpose of our study was to investigate the occurrence of common dolphins off the Wild Coast of South Africa (western Indian Ocean) and whether spatiotemporal and environmental conditions affected their encounter rate, relative abundance and mean group size. The annual sardine run in this region, during austral winter (May to July), is considered a main driver of dolphin occurrence; however, our boat-based surveys over the period 2014–2016 indicated that common dolphins occur and feed in this area outside of this time-frame. In terms of environmental factors, the largest group (∼1 250 animals) was found in the deepest waters. Additionally, at Hluleka, dolphins were observed primarily feeding, which could suggest that this coastal area is highly productive. As common dolphin distribution is thought to be correlated with prey distribution, our findings suggest that sufficient prey exists along the Wild Coast both during and outside the annual sardine run to sustain large groups of the dolphins and that their presence in the area is not solely a function of the sardine run.
- Full Text:
- Date Issued: 2020
Examining intraspecific multiple predator effects across shifting predator sex ratios:
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/150119 , vital:38941 , https://doi.org/10.1016/j.baae.2020.03.002
- Description: Predator-predator interactions, or “multiple predator effects” (MPEs), are pervasive in the structuring of communities and complicate predictive quantifications of ecosystem dynamics. The nature of MPEs is also context-dependent, manifesting differently among species, prey densities and habitat structures. However, there has hitherto been a lack of consideration for the implications of intraspecific demographic variation within populations for the strength of MPEs. The present study extends MPE concepts to examine intraspecific interactions among male and female predators across differences in prey densities using a functional response approach. Focusing on a copepod-mosquito model predator-prey system, interaction strengths of different sex ratio pairs of Lovenula raynerae were quantified towards larval Culex pipiens complex prey, with observations compared to both additive and substitutive model predictions.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/150119 , vital:38941 , https://doi.org/10.1016/j.baae.2020.03.002
- Description: Predator-predator interactions, or “multiple predator effects” (MPEs), are pervasive in the structuring of communities and complicate predictive quantifications of ecosystem dynamics. The nature of MPEs is also context-dependent, manifesting differently among species, prey densities and habitat structures. However, there has hitherto been a lack of consideration for the implications of intraspecific demographic variation within populations for the strength of MPEs. The present study extends MPE concepts to examine intraspecific interactions among male and female predators across differences in prey densities using a functional response approach. Focusing on a copepod-mosquito model predator-prey system, interaction strengths of different sex ratio pairs of Lovenula raynerae were quantified towards larval Culex pipiens complex prey, with observations compared to both additive and substitutive model predictions.
- Full Text:
- Date Issued: 2020
Inter-population similarities and differences in predation efficiency of a mosquito natural enemy
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466928 , vital:76799 , https://doi.org/10.1093/jme/tjaa093
- Description: Predation is a critical factor that mediates population stability, community structure, and ecosystem function. Predatory natural enemies can contribute to the regulation of disease vector groups such as mosquitoes, particularly where they naturally co-occur across landscapes. However, we must understand inter-population variation in predatory efficiency if we are to enhance vector control. The present study thus employs a functional response (FR; resource use under different densities) approach to quantify and compare predatory interaction strengths among six populations of a predatory temporary pond specialist copepod, Lovenula raynerae, from the Eastern Cape of South Africa preying on second instar Culex pipiens complex mosquito larvae.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466928 , vital:76799 , https://doi.org/10.1093/jme/tjaa093
- Description: Predation is a critical factor that mediates population stability, community structure, and ecosystem function. Predatory natural enemies can contribute to the regulation of disease vector groups such as mosquitoes, particularly where they naturally co-occur across landscapes. However, we must understand inter-population variation in predatory efficiency if we are to enhance vector control. The present study thus employs a functional response (FR; resource use under different densities) approach to quantify and compare predatory interaction strengths among six populations of a predatory temporary pond specialist copepod, Lovenula raynerae, from the Eastern Cape of South Africa preying on second instar Culex pipiens complex mosquito larvae.
- Full Text:
- Date Issued: 2020
Lack of prey switching and strong preference for mosquito prey by a temporary pond specialist predator
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466946 , vital:76801 , https://doi.org/10.1111/een.12801
- Description: The strengths of trophic interactions within ecosystems can be mediated by complex mechanisms that require elucidation if researchers are to understand and predict population‐ and community‐level stabilities. Where multiple prey types co‐occur, prey switching (i.e. frequency‐dependent predation) by predators may facilitate low‐density prey refuge effects which promote coexistence. On the other hand, lack of switching and strong preferences by predators can strongly suppress prey populations, which is especially important considering vector species such as mosquitoes.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466946 , vital:76801 , https://doi.org/10.1111/een.12801
- Description: The strengths of trophic interactions within ecosystems can be mediated by complex mechanisms that require elucidation if researchers are to understand and predict population‐ and community‐level stabilities. Where multiple prey types co‐occur, prey switching (i.e. frequency‐dependent predation) by predators may facilitate low‐density prey refuge effects which promote coexistence. On the other hand, lack of switching and strong preferences by predators can strongly suppress prey populations, which is especially important considering vector species such as mosquitoes.
- Full Text:
- Date Issued: 2020
Life history parameters and diet of Risso's dolphins, Grampus griseus, from southeastern South Africa
- Plön, Stephanie, Heynes-Veale, Elodie R, Smale, Malcolm J, Froneman, P William
- Authors: Plön, Stephanie , Heynes-Veale, Elodie R , Smale, Malcolm J , Froneman, P William
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467266 , vital:76846 , https://doi.org/10.1111/mms.12675
- Description: The life history of Risso's dolphins (Grampus griseus) remains poorly known and data from strandings can help provide important information. Data from 126 Risso's dolphins stranded or bycaught along the southeastern coastline of South Africa between 1958 and 2017 were analyzed in relation to their sex, age structure, and diet. Mean estimated length at birth was 146.9 cm, while maximum length was 325 cm for males and 313 cm for females; small sample sizes precluded detailed examination of sexual dimorphism. Age estimates for 33 individuals (14 males, 17 females, 2 unknown sex) indicated a maximum age of 13 years (males) and 17 years (females), respectively; the oldest animal was 19 years (unknown sex). Mean length and age at attainment of sexual maturity were estimated at 280 cm and 7.1 years in males and at 282 cm and 7.7 years in females. Stomach contents from 27 individuals showed that diets of immature and mature males and females overlapped and consisted predominantly of cephalopods. Reported strandings decreased between 2000 and 2017, possibly due to a lack of reporting associated with a ban on driving on beaches or related to the collapse of the local “chokka” squid (Loligo reynaudii) fishery in 2014–2015.
- Full Text:
- Date Issued: 2020
- Authors: Plön, Stephanie , Heynes-Veale, Elodie R , Smale, Malcolm J , Froneman, P William
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467266 , vital:76846 , https://doi.org/10.1111/mms.12675
- Description: The life history of Risso's dolphins (Grampus griseus) remains poorly known and data from strandings can help provide important information. Data from 126 Risso's dolphins stranded or bycaught along the southeastern coastline of South Africa between 1958 and 2017 were analyzed in relation to their sex, age structure, and diet. Mean estimated length at birth was 146.9 cm, while maximum length was 325 cm for males and 313 cm for females; small sample sizes precluded detailed examination of sexual dimorphism. Age estimates for 33 individuals (14 males, 17 females, 2 unknown sex) indicated a maximum age of 13 years (males) and 17 years (females), respectively; the oldest animal was 19 years (unknown sex). Mean length and age at attainment of sexual maturity were estimated at 280 cm and 7.1 years in males and at 282 cm and 7.7 years in females. Stomach contents from 27 individuals showed that diets of immature and mature males and females overlapped and consisted predominantly of cephalopods. Reported strandings decreased between 2000 and 2017, possibly due to a lack of reporting associated with a ban on driving on beaches or related to the collapse of the local “chokka” squid (Loligo reynaudii) fishery in 2014–2015.
- Full Text:
- Date Issued: 2020
Occurrence of Indo-Pacific bottlenose dolphins (Tursiops aduncus) off the Wild Coast of South Africa using photographic identification:
- Caputo, Michelle, Bouveroux, Thibaut, Froneman, P William, Shaanika, Titus, Plön, Stephanie
- Authors: Caputo, Michelle , Bouveroux, Thibaut , Froneman, P William , Shaanika, Titus , Plön, Stephanie
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160367 , vital:40439 , https://0-doi.org.wam.seals.ac.za/10.1111/mms.12740
- Description: The present study represents the first reported boat‐based photographic identification study of Indo‐Pacific bottlenose dolphins (Tursiops aduncus) off the Wild Coast of southeast South Africa. This area is known for the annual sardine run, which attracts apex predators to the region during the austral winter. Dedicated photo‐identification surveys were conducted along this coast at three different study sites in February, June, and November of each year from 2014 to 2016.
- Full Text:
- Date Issued: 2020
- Authors: Caputo, Michelle , Bouveroux, Thibaut , Froneman, P William , Shaanika, Titus , Plön, Stephanie
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160367 , vital:40439 , https://0-doi.org.wam.seals.ac.za/10.1111/mms.12740
- Description: The present study represents the first reported boat‐based photographic identification study of Indo‐Pacific bottlenose dolphins (Tursiops aduncus) off the Wild Coast of southeast South Africa. This area is known for the annual sardine run, which attracts apex predators to the region during the austral winter. Dedicated photo‐identification surveys were conducted along this coast at three different study sites in February, June, and November of each year from 2014 to 2016.
- Full Text:
- Date Issued: 2020
Sex demographics alter the effect of habitat structure on predation by a temporary pond specialist
- Cuthbert, Ross N, Sithagu, Rotondwa, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Foord, Stefan, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466968 , vital:76803 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Habitat structure can profoundly influence interaction strengths between predators and prey. Spatio-temporal habitat structure in temporary wetland ecosystems is particularly variable because of fluctuations in water levels and vegetation colonisation dynamics. Demographic characteristics within animal populations may also alter the influence of habitat structure on biotic interactions, but have remained untested. Here, we investigate the influence of vegetation habitat structure on the consumption of larval mosquito prey by the calanoid copepod Lovenula raynerae, a temporary pond specialist. Increased habitat complexity reduced predation, and gravid female copepods were generally more voracious than male copepods in simplified habitats. However, sexes were more similar as habitat complexity increased. Type II functional responses were exhibited by the copepods irrespective of habitat complexity and sex, owing to consistent high prey acquisition at low prey densities. Attack rates by copepods were relatively unaffected by the complexity gradient, whilst handling times lengthened under more complex environments in gravid female copepods. We demonstrate emergent effects of habitat complexity across species demographics, with predation by males more robust to differences in habitat complexity than females. For ecosystems such as temporary ponds where sex-skewed predator ratios develop, our laboratory findings suggest habitat complexity and sex demographics mediate prey risk.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466968 , vital:76803 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Habitat structure can profoundly influence interaction strengths between predators and prey. Spatio-temporal habitat structure in temporary wetland ecosystems is particularly variable because of fluctuations in water levels and vegetation colonisation dynamics. Demographic characteristics within animal populations may also alter the influence of habitat structure on biotic interactions, but have remained untested. Here, we investigate the influence of vegetation habitat structure on the consumption of larval mosquito prey by the calanoid copepod Lovenula raynerae, a temporary pond specialist. Increased habitat complexity reduced predation, and gravid female copepods were generally more voracious than male copepods in simplified habitats. However, sexes were more similar as habitat complexity increased. Type II functional responses were exhibited by the copepods irrespective of habitat complexity and sex, owing to consistent high prey acquisition at low prey densities. Attack rates by copepods were relatively unaffected by the complexity gradient, whilst handling times lengthened under more complex environments in gravid female copepods. We demonstrate emergent effects of habitat complexity across species demographics, with predation by males more robust to differences in habitat complexity than females. For ecosystems such as temporary ponds where sex-skewed predator ratios develop, our laboratory findings suggest habitat complexity and sex demographics mediate prey risk.
- Full Text:
- Date Issued: 2020
Water volume differentially modifies copepod predatory strengths on two prey types
- Cuthbert, Ross N, Sithagu, Rotondwa, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Foord, Stefan, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466979 , vital:76804 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Predatory interaction strengths are highly context-dependent, and in temporary aquatic ecosystems, may be affected by water volume changes. We examine the influence of water volume on Lovenula raynerae (Copepoda) functional responses towards two temporary pond prey types. Daphnia prey risk was not affected by increasing water volume, whereas for Culex prey risk was reduced. Accordingly, water volume changes through the hydroperiod may have species-specific effects on prey, with implications for population persistence under environmental change.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466979 , vital:76804 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Predatory interaction strengths are highly context-dependent, and in temporary aquatic ecosystems, may be affected by water volume changes. We examine the influence of water volume on Lovenula raynerae (Copepoda) functional responses towards two temporary pond prey types. Daphnia prey risk was not affected by increasing water volume, whereas for Culex prey risk was reduced. Accordingly, water volume changes through the hydroperiod may have species-specific effects on prey, with implications for population persistence under environmental change.
- Full Text:
- Date Issued: 2020
Additive multiple predator effects of two specialist paradiaptomid copepods towards larval mosquitoes
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467137 , vital:76828 , https://doi.org/10.1016/j.limno.2019.125727
- Description: Interactions between multiple predators can profoundly affect prey risk, with implications for prey population stability and ecosystem functioning. In austral temporary wetlands, arid-area adapted specialist copepods are key predators for much of the hydroperiod. Limited autoecological information relating to species interactions negates understandings of trophic dynamics in these systems. In the present study, we examined multiple predator effects of two key predatory paradiaptomid copepods which often coexist in austral temporary wetlands, Lovenula raynerae Suárez-Morales, Wasserman and Dalu 2015 and Paradiaptomus lamellatus Sars, 1985. Predation rates towards larval mosquito prey across different water depths were quantified.
- Full Text:
- Date Issued: 2019
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467137 , vital:76828 , https://doi.org/10.1016/j.limno.2019.125727
- Description: Interactions between multiple predators can profoundly affect prey risk, with implications for prey population stability and ecosystem functioning. In austral temporary wetlands, arid-area adapted specialist copepods are key predators for much of the hydroperiod. Limited autoecological information relating to species interactions negates understandings of trophic dynamics in these systems. In the present study, we examined multiple predator effects of two key predatory paradiaptomid copepods which often coexist in austral temporary wetlands, Lovenula raynerae Suárez-Morales, Wasserman and Dalu 2015 and Paradiaptomus lamellatus Sars, 1985. Predation rates towards larval mosquito prey across different water depths were quantified.
- Full Text:
- Date Issued: 2019
Biological monitoring in southern Africa: a review of the current status, challenges and future prospects
- Mangadze, Tinotenda, Dalu, Tatenda, Froneman, P William
- Authors: Mangadze, Tinotenda , Dalu, Tatenda , Froneman, P William
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467193 , vital:76838 , https://doi.org/10.1016/j.scitotenv.2018.08.252
- Description: Biological monitoring programmes have gained popularity around the world particularly in southern Africa as they are fast, integrative and cost-effective approaches for assessing the effects of environmental stressors on aquatic ecosystems. This article reviews current efforts that have been made to use bioindicators (i.e. macroinvertebrates, diatoms and fish) in monitoring water resources and to summarise the challenges in employing these biological monitoring tools in southern Africa. In South Africa, macroinvertebrate (South African Scoring System (SASS)) and diatom based indices (e.g. South African diatom index (SADI)) have demonstrated their utility in identifying sources of impairment and determining the extent of impacts thus giving natural resource managers a scientifically defensible rationale for developing guidelines for conservation and management. Despite this advancement in South Africa, however, developing regionally appropriate quantitative tools for diagnosing ecosystem health is a pressing need for several other southern African countries. Together with sound scientific research, it is imperative for southern African countries to develop specific legislation and have mandated agencies, with proper training and funding to implement biomonitoring and bioassessments. We recommend for the advancement and adoption of biological criteria as an integrated approach to assessing the impact of human activities in riverine ecosystems of the southern African region.
- Full Text:
- Date Issued: 2019
- Authors: Mangadze, Tinotenda , Dalu, Tatenda , Froneman, P William
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467193 , vital:76838 , https://doi.org/10.1016/j.scitotenv.2018.08.252
- Description: Biological monitoring programmes have gained popularity around the world particularly in southern Africa as they are fast, integrative and cost-effective approaches for assessing the effects of environmental stressors on aquatic ecosystems. This article reviews current efforts that have been made to use bioindicators (i.e. macroinvertebrates, diatoms and fish) in monitoring water resources and to summarise the challenges in employing these biological monitoring tools in southern Africa. In South Africa, macroinvertebrate (South African Scoring System (SASS)) and diatom based indices (e.g. South African diatom index (SADI)) have demonstrated their utility in identifying sources of impairment and determining the extent of impacts thus giving natural resource managers a scientifically defensible rationale for developing guidelines for conservation and management. Despite this advancement in South Africa, however, developing regionally appropriate quantitative tools for diagnosing ecosystem health is a pressing need for several other southern African countries. Together with sound scientific research, it is imperative for southern African countries to develop specific legislation and have mandated agencies, with proper training and funding to implement biomonitoring and bioassessments. We recommend for the advancement and adoption of biological criteria as an integrated approach to assessing the impact of human activities in riverine ecosystems of the southern African region.
- Full Text:
- Date Issued: 2019
Combined impacts of warming and salinisation on trophic interactions and mortality of a specialist ephemeral wetland predator
- Cuthbert, Ross N, Weyl, Olaf L F, Wasserman, Ryan J, Dick, Jaimie T A, Froneman, P William, Callaghan, Amanda, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Weyl, Olaf L F , Wasserman, Ryan J , Dick, Jaimie T A , Froneman, P William , Callaghan, Amanda , Dalu, Tatenda
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467160 , vital:76832 , https://doi.org/10.1111/fwb.13353
- Description: Wetlands are of enormous importance for biodiversity globally but are under increasing risk from multiple stressors driven by ongoing anthro-pogenic environmental change. As the trophic structure and dynamics of ephemeral wetlands are poorly understood, it is difficult to predict how these biodiverse ecosystems will be impacted by global change. In particular, warming and salinisation are projected to have profound im-pacts on these wetlands in future. The present study examined the combined effects of warming and salinisation on species interaction strengths and mortality rates for two ephemeral wetland species. Using an ephemeral pond specialist copepod, Lovenula raynerae Suárez‐Morales, Wasserman, and Dalu, (2015) as a model predator species, we applied a functional response approach to derive warming and salinisa-tion effects on trophic interactions with a prey species. Furthermore, the effects of a salinisation gradient on mortality rates of adult copepods were quantified.
- Full Text:
- Date Issued: 2019
- Authors: Cuthbert, Ross N , Weyl, Olaf L F , Wasserman, Ryan J , Dick, Jaimie T A , Froneman, P William , Callaghan, Amanda , Dalu, Tatenda
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467160 , vital:76832 , https://doi.org/10.1111/fwb.13353
- Description: Wetlands are of enormous importance for biodiversity globally but are under increasing risk from multiple stressors driven by ongoing anthro-pogenic environmental change. As the trophic structure and dynamics of ephemeral wetlands are poorly understood, it is difficult to predict how these biodiverse ecosystems will be impacted by global change. In particular, warming and salinisation are projected to have profound im-pacts on these wetlands in future. The present study examined the combined effects of warming and salinisation on species interaction strengths and mortality rates for two ephemeral wetland species. Using an ephemeral pond specialist copepod, Lovenula raynerae Suárez‐Morales, Wasserman, and Dalu, (2015) as a model predator species, we applied a functional response approach to derive warming and salinisa-tion effects on trophic interactions with a prey species. Furthermore, the effects of a salinisation gradient on mortality rates of adult copepods were quantified.
- Full Text:
- Date Issued: 2019
Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams
- Mangadze, Tinotenda, Wasserman, Ryan J, Froneman, P William, Dalu, Tatenda
- Authors: Mangadze, Tinotenda , Wasserman, Ryan J , Froneman, P William , Dalu, Tatenda
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467211 , vital:76840 , https://doi.org/10.1016/j.scitotenv.2019.133910
- Description: Protecting the structural and functional integrity of lotic ecosystems is becoming increasingly important as many ecological systems face escalating pressures from human population growth and environmental impacts. Knowledge on the functional composition of macroinvertebrates in austral temperate streams is generally lacking hindering the design and implementation of water management and restoration goals. Therefore, this study examined the effects of urban land–use activities on the benthic macroinvertebrate functional feeding guild structure among different stream orders in an austral river system (Bloukrans River) in the Eastern Cape Province of South Africa. Water quality and macroinvertebrate community data were collected across two seasons from 18 sites in two different stream order categories (i.e. 1, 2 + 3), following standard methods. We separated macroinvertebrates into functional feeding groups (FFGs), which we then used to assess the effects of riparian condition on FFG organization. Linear mixed effects model (LMM) results demonstrated that total dissolved solids (TDS), canopy cover, phosphate and channel width were the key variables that described the major sources of variation in macroinvertebrate FFGs.
- Full Text:
- Date Issued: 2019
- Authors: Mangadze, Tinotenda , Wasserman, Ryan J , Froneman, P William , Dalu, Tatenda
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467211 , vital:76840 , https://doi.org/10.1016/j.scitotenv.2019.133910
- Description: Protecting the structural and functional integrity of lotic ecosystems is becoming increasingly important as many ecological systems face escalating pressures from human population growth and environmental impacts. Knowledge on the functional composition of macroinvertebrates in austral temperate streams is generally lacking hindering the design and implementation of water management and restoration goals. Therefore, this study examined the effects of urban land–use activities on the benthic macroinvertebrate functional feeding guild structure among different stream orders in an austral river system (Bloukrans River) in the Eastern Cape Province of South Africa. Water quality and macroinvertebrate community data were collected across two seasons from 18 sites in two different stream order categories (i.e. 1, 2 + 3), following standard methods. We separated macroinvertebrates into functional feeding groups (FFGs), which we then used to assess the effects of riparian condition on FFG organization. Linear mixed effects model (LMM) results demonstrated that total dissolved solids (TDS), canopy cover, phosphate and channel width were the key variables that described the major sources of variation in macroinvertebrate FFGs.
- Full Text:
- Date Issued: 2019
Quantifying reproductive state and predator effects on copepod motility in ephemeral ecosystems
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Froneman, P William, Weyl, Olaf L F
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Froneman, P William , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467171 , vital:76836 , https://doi.org/10.1016/j.jaridenv.2019.05.010
- Description: Ephemeral wetlands in arid environments are unique ecosystems with atypical trophic structuring, often dominated by invertebrate predation. Copepod behavioural traits and vulnerabilities to predation can vary substantially according to reproductive status. Gravid female copepods may be more vulnerable to predation due to reduced escape speeds or higher visibility to predators. Here, we quantify how reproductive status modulates horizontal motility rates of the predatory ephemeral pond specialist copepod Lovenula raynerae, and the responsiveness of the copepod to predator cues of the notonectid Anisops debilis. Males exhibited significantly higher motility rates than gravid female copepods, however chemical predator cues did not significantly influence activity rates in either sex. The lack of responsiveness to predator cues by specialist copepods in ephemeral wetlands may result from a lack of predation pressure in these systems, or due to time stress to reproduce during short hydroperiods. In turn, this could increase predation risk to copepods from externally-recruited top predators in ephemeral wetlands, and potentially contribute to the development of skewed sex ratios in favour of females.
- Full Text:
- Date Issued: 2019
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Froneman, P William , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467171 , vital:76836 , https://doi.org/10.1016/j.jaridenv.2019.05.010
- Description: Ephemeral wetlands in arid environments are unique ecosystems with atypical trophic structuring, often dominated by invertebrate predation. Copepod behavioural traits and vulnerabilities to predation can vary substantially according to reproductive status. Gravid female copepods may be more vulnerable to predation due to reduced escape speeds or higher visibility to predators. Here, we quantify how reproductive status modulates horizontal motility rates of the predatory ephemeral pond specialist copepod Lovenula raynerae, and the responsiveness of the copepod to predator cues of the notonectid Anisops debilis. Males exhibited significantly higher motility rates than gravid female copepods, however chemical predator cues did not significantly influence activity rates in either sex. The lack of responsiveness to predator cues by specialist copepods in ephemeral wetlands may result from a lack of predation pressure in these systems, or due to time stress to reproduce during short hydroperiods. In turn, this could increase predation risk to copepods from externally-recruited top predators in ephemeral wetlands, and potentially contribute to the development of skewed sex ratios in favour of females.
- Full Text:
- Date Issued: 2019