Probing the structural dynamics of the Plasmodium falciparum tunneling-fold enzyme 6-pyruvoyl tetrahydropterin synthase to reveal allosteric drug targeting sites:
- Khairallah, Afrah, Ross, Caroline J, Tastan Bishop, Özlem
- Authors: Khairallah, Afrah , Ross, Caroline J , Tastan Bishop, Özlem
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163057 , vital:41008 , https://doi.org/10.3389/fmolb.2020.575196
- Description: The de novo folate synthesis pathway is a well-established drug target in the treatment of many infectious diseases. Antimalarial antifolate drugs have proven to be effective against malaria, however, rapid drug resistance has emerged on the two primary targeted enzymes: dihydrofolate reductase and dihydroptoreate synthase. The need to identify alternative antifolate drugs and novel metabolic targets is of imminent importance. The 6-pyruvol tetrahydropterin synthase (PTPS) enzyme belongs to the tunneling fold protein superfamily which is characterized by a distinct central tunnel/cavity. The enzyme catalyzes the second reaction step of the parasite’s de novo folate synthesis pathway and is responsible for the conversion of 7,8-dihydroneopterin to 6-pyruvoyl-tetrahydropterin. In this study, we examine the structural dynamics of Plasmodium falciparum PTPS using the anisotropic network model, to elucidate the collective motions that drive the function of the enzyme and identify potential sites for allosteric modulation of its binding properties.
- Full Text:
- Date Issued: 2020
- Authors: Khairallah, Afrah , Ross, Caroline J , Tastan Bishop, Özlem
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163057 , vital:41008 , https://doi.org/10.3389/fmolb.2020.575196
- Description: The de novo folate synthesis pathway is a well-established drug target in the treatment of many infectious diseases. Antimalarial antifolate drugs have proven to be effective against malaria, however, rapid drug resistance has emerged on the two primary targeted enzymes: dihydrofolate reductase and dihydroptoreate synthase. The need to identify alternative antifolate drugs and novel metabolic targets is of imminent importance. The 6-pyruvol tetrahydropterin synthase (PTPS) enzyme belongs to the tunneling fold protein superfamily which is characterized by a distinct central tunnel/cavity. The enzyme catalyzes the second reaction step of the parasite’s de novo folate synthesis pathway and is responsible for the conversion of 7,8-dihydroneopterin to 6-pyruvoyl-tetrahydropterin. In this study, we examine the structural dynamics of Plasmodium falciparum PTPS using the anisotropic network model, to elucidate the collective motions that drive the function of the enzyme and identify potential sites for allosteric modulation of its binding properties.
- Full Text:
- Date Issued: 2020
The In Silico Prediction of hotspot residues that contribute to the structural stability of subunit interfaces of a Picornavirus Capsid:
- Upfold, Nicole, Ross, Caroline J, Tastan Bishop, Özlem, Knox, Caroline M
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149970 , vital:38919 , https://doi.org/10.3390/v12040387
- Description: The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid.
- Full Text:
- Date Issued: 2020
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149970 , vital:38919 , https://doi.org/10.3390/v12040387
- Description: The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid.
- Full Text:
- Date Issued: 2020
Computational analysis of missense mutations from the human Macrophage Migration Inhibitory Factor (MIF) protein by Molecular Dynamics Simulations and Dynamic Residue Network Analysis:
- Kimuda, Phillip M, Brown, David K, Amamuddy, Olivier S, Ross, Caroline J, Matovu, Enock, Tastan Bishop, Özlem
- Authors: Kimuda, Phillip M , Brown, David K , Amamuddy, Olivier S , Ross, Caroline J , Matovu, Enock , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163238 , vital:41021 , https://doi.org/10.21955/aasopenres.1115054.1
- Description: Missense mutations are changes in the DNA that result in a change in the amino acid sequence. Depending on their location within the protein they can have a negative impact on how the protein functions. This is especially important for proteins involved in the body’s response to infection and diseases. Macrophage migration inhibitory factor (MIF) is one such protein that functions to recruit white blood cells to sites of inflammation.
- Full Text:
- Date Issued: 2019
- Authors: Kimuda, Phillip M , Brown, David K , Amamuddy, Olivier S , Ross, Caroline J , Matovu, Enock , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163238 , vital:41021 , https://doi.org/10.21955/aasopenres.1115054.1
- Description: Missense mutations are changes in the DNA that result in a change in the amino acid sequence. Depending on their location within the protein they can have a negative impact on how the protein functions. This is especially important for proteins involved in the body’s response to infection and diseases. Macrophage migration inhibitory factor (MIF) is one such protein that functions to recruit white blood cells to sites of inflammation.
- Full Text:
- Date Issued: 2019
MODE-TASK: Large-scale protein motion tools
- Ross, Caroline J, Nizami, B, Glenister, Michael, Amamuddy, Olivier S, Atilgan, Ali R, Atilgan, Canan, Tastan Bishop, Özlem
- Authors: Ross, Caroline J , Nizami, B , Glenister, Michael , Amamuddy, Olivier S , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125206 , vital:35746 , http://dx.doi.org/10.1101/217505
- Description: Conventional analysis of molecular dynamics (MD) trajectories may not identify global motions of macromolecules. Normal Mode Analysis (NMA) and Principle Component Analysis (PCA) are two popular methods to quantify large-scale motions, and find the “essential motions”; and have been applied to problems such as drug resistant mutations (Nizami et al., 2016) and viral capsid expansion (Hsieh et al., 2016). MODE-TASK is an array of tools to analyse and compare protein dynamics obtained from MD simulations and/or coarse grained elastic network models. Users may perform standard PCA, kernel and incremental PCA (IPCA). Data reduction techniques (Multidimensional Scaling (MDS) and t-Distributed Stochastics Neighbor Embedding (t-SNE)) are implemented. Users may analyse normal modes by constructing elastic network models (ENMs) of a protein complex. A novel coarse graining approach extends its application to large biological assemblies.
- Full Text:
- Date Issued: 2018
- Authors: Ross, Caroline J , Nizami, B , Glenister, Michael , Amamuddy, Olivier S , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125206 , vital:35746 , http://dx.doi.org/10.1101/217505
- Description: Conventional analysis of molecular dynamics (MD) trajectories may not identify global motions of macromolecules. Normal Mode Analysis (NMA) and Principle Component Analysis (PCA) are two popular methods to quantify large-scale motions, and find the “essential motions”; and have been applied to problems such as drug resistant mutations (Nizami et al., 2016) and viral capsid expansion (Hsieh et al., 2016). MODE-TASK is an array of tools to analyse and compare protein dynamics obtained from MD simulations and/or coarse grained elastic network models. Users may perform standard PCA, kernel and incremental PCA (IPCA). Data reduction techniques (Multidimensional Scaling (MDS) and t-Distributed Stochastics Neighbor Embedding (t-SNE)) are implemented. Users may analyse normal modes by constructing elastic network models (ENMs) of a protein complex. A novel coarse graining approach extends its application to large biological assemblies.
- Full Text:
- Date Issued: 2018
The generation and characterisation of neutralising antibodies against the Theiler’s murine encephalomyelitis virus (TMEV) GDVII capsid reveals the potential binding site of the host cell co-receptor, heparan sulfate:
- Upfold, Nicole, Ross, Caroline J, Tastan Bishop, Özlem, Luke, Garry A, Knox, Caroline M
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Luke, Garry A , Knox, Caroline M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148181 , vital:38717 , DOI: 10.1016/j.virusres.2017.11.017
- Description: The early stages of picornavirus capsid assembly and the host factors involved are poorly understood. Since the localisation of viral proteins in infected cells can provide information on their function, antibodies against purified Theiler's murine encephalomyelitis virus (TMEV) GDVII capsids were generated by immunisation of rabbits. The resultant anti-TMEV capsid antibodies recognised a C-terminal region of VP1 but not VP2 or VP3 by Western analysis. Examination of the sites of TMEV capsid assembly by indirect immunofluorescence and confocal microscopy showed that at 5 h post infection, capsid signal was diffusely cytoplasmic with strong perinuclear staining and moved into large punctate structures from 6 to 8 h post infection.
- Full Text:
- Date Issued: 2018
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Luke, Garry A , Knox, Caroline M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148181 , vital:38717 , DOI: 10.1016/j.virusres.2017.11.017
- Description: The early stages of picornavirus capsid assembly and the host factors involved are poorly understood. Since the localisation of viral proteins in infected cells can provide information on their function, antibodies against purified Theiler's murine encephalomyelitis virus (TMEV) GDVII capsids were generated by immunisation of rabbits. The resultant anti-TMEV capsid antibodies recognised a C-terminal region of VP1 but not VP2 or VP3 by Western analysis. Examination of the sites of TMEV capsid assembly by indirect immunofluorescence and confocal microscopy showed that at 5 h post infection, capsid signal was diffusely cytoplasmic with strong perinuclear staining and moved into large punctate structures from 6 to 8 h post infection.
- Full Text:
- Date Issued: 2018
Unraveling the Motions behind Enterovirus 71 Uncoating:
- Ross, Caroline J, Atilgan, Ali R, Tastan Bishop, Özlem, Atilgan, Canan
- Authors: Ross, Caroline J , Atilgan, Ali R , Tastan Bishop, Özlem , Atilgan, Canan
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148158 , vital:38715 , DOI: 10.1016/j.bpj.2017.12.021
- Description: Enterovirus 71 can be a severe pathogen in small children and immunocompromised adults. Virus uncoating is a critical step in the infection of the host cell; however, the mechanisms that control this process remain poorly understood. We applied normal mode analysis and perturbation response scanning to several complexes of the virus capsid and present a coarse-graining approach to analyze the full capsid. We show that our method offers an alternative to expressing the system as a set of rigid blocks and accounts for the interconnection between nodes within each subunit and protein interfaces across the capsid. In our coarse-grained approach, the modes associated with capsid expansion are captured in the first three nondegenerate modes and correspond to the changes observed in structural studies of the virus. We show that the resolution of the analysis may be modified without losing information on the global motions leading to uncoating.
- Full Text:
- Date Issued: 2018
- Authors: Ross, Caroline J , Atilgan, Ali R , Tastan Bishop, Özlem , Atilgan, Canan
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148158 , vital:38715 , DOI: 10.1016/j.bpj.2017.12.021
- Description: Enterovirus 71 can be a severe pathogen in small children and immunocompromised adults. Virus uncoating is a critical step in the infection of the host cell; however, the mechanisms that control this process remain poorly understood. We applied normal mode analysis and perturbation response scanning to several complexes of the virus capsid and present a coarse-graining approach to analyze the full capsid. We show that our method offers an alternative to expressing the system as a set of rigid blocks and accounts for the interconnection between nodes within each subunit and protein interfaces across the capsid. In our coarse-grained approach, the modes associated with capsid expansion are captured in the first three nondegenerate modes and correspond to the changes observed in structural studies of the virus. We show that the resolution of the analysis may be modified without losing information on the global motions leading to uncoating.
- Full Text:
- Date Issued: 2018
Interacting motif networks located in hotspots associated with RNA release are conserved in Enterovirus capsids
- Ross, Caroline J, Knox, Caroline M, Tastan Bishop, Özlem
- Authors: Ross, Caroline J , Knox, Caroline M , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124855 , vital:35704 , https://doi.10.1002/1873-3468.12663
- Description: Enteroviruses are responsible for a multitude of human diseases. Expansion of the virus capsid is associated with a cascade of conformational changes that allow the subsequent release of RNA. For the first time, this study presents a comprehensive bioinformatic screen for the prediction of interacting motifs within intraprotomer interfaces and across respective interfaces surrounding the fivefold and twofold axes. The results identify a network of conserved motif residues involved in interactions in enteroviruses that may be critical to capsid stabilisation, providing guidelines towards developing antivirals that interfere with viral expansion during RNA release.
- Full Text:
- Date Issued: 2017
- Authors: Ross, Caroline J , Knox, Caroline M , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124855 , vital:35704 , https://doi.10.1002/1873-3468.12663
- Description: Enteroviruses are responsible for a multitude of human diseases. Expansion of the virus capsid is associated with a cascade of conformational changes that allow the subsequent release of RNA. For the first time, this study presents a comprehensive bioinformatic screen for the prediction of interacting motifs within intraprotomer interfaces and across respective interfaces surrounding the fivefold and twofold axes. The results identify a network of conserved motif residues involved in interactions in enteroviruses that may be critical to capsid stabilisation, providing guidelines towards developing antivirals that interfere with viral expansion during RNA release.
- Full Text:
- Date Issued: 2017
MD-TASK: a software suite for analyzing molecular dynamics trajectories
- Brown, David K, Penkler, David L, Amamuddy, Olivier S, Ross, Caroline J, Atilgan, Ali R, Atilgan, Canan, Tastan Bishop, Özlem
- Authors: Brown, David K , Penkler, David L , Amamuddy, Olivier S , Ross, Caroline J , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125138 , vital:35735 , https://doi.10.1093/bioinformatics/btx349
- Description: Molecular dynamics (MD) determines the physical motions of atoms of a biological macromolecule in a cell-like environment and is an important method in structural bioinformatics. Traditionally, measurements such as root mean square deviation, root mean square fluctuation, radius of gyration, and various energy measures have been used to analyze MD simulations. Here, we present MD-TASK, a novel software suite that employs graph theory techniques, perturbation response scanning, and dynamic cross-correlation to provide unique ways for analyzing MD trajectories.
- Full Text:
- Date Issued: 2017
- Authors: Brown, David K , Penkler, David L , Amamuddy, Olivier S , Ross, Caroline J , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125138 , vital:35735 , https://doi.10.1093/bioinformatics/btx349
- Description: Molecular dynamics (MD) determines the physical motions of atoms of a biological macromolecule in a cell-like environment and is an important method in structural bioinformatics. Traditionally, measurements such as root mean square deviation, root mean square fluctuation, radius of gyration, and various energy measures have been used to analyze MD simulations. Here, we present MD-TASK, a novel software suite that employs graph theory techniques, perturbation response scanning, and dynamic cross-correlation to provide unique ways for analyzing MD trajectories.
- Full Text:
- Date Issued: 2017
Subcellular localisation of Theiler's murine encephalomyelitis virus (TMEV) capsid subunit VP1 vis-á-vis host protein Hsp90:
- Ross, Caroline J, Upfold, Nicole, Luke, Garry A, Tastan Bishop, Özlem, Knox, Caroline M
- Authors: Ross, Caroline J , Upfold, Nicole , Luke, Garry A , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148016 , vital:38702 , DOI: 10.1016/j.virusres.2016.06.003
- Description: The VP1 subunit of the picornavirus capsid is the major antigenic determinant and mediates host cell attachment and virus entry. To investigate the localisation of Theiler's murine encephalomyelitis virus (TMEV) VP1 during infection, a bioinformatics approach was used to predict a surface-exposed, linear epitope region of the protein for subsequent expression and purification. This region, comprising the N-terminal 112 amino acids of the protein, was then used for rabbit immunisation, and the resultant polyclonal antibodies were able to recognise full length VP1 in infected cell lysates by Western blot. Following optimisation, the antibodies were used to investigate the localisation of VP1 in relation to Hsp90 in infected cells by indirect immunofluorescence and confocal microscopy.
- Full Text:
- Date Issued: 2016
- Authors: Ross, Caroline J , Upfold, Nicole , Luke, Garry A , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148016 , vital:38702 , DOI: 10.1016/j.virusres.2016.06.003
- Description: The VP1 subunit of the picornavirus capsid is the major antigenic determinant and mediates host cell attachment and virus entry. To investigate the localisation of Theiler's murine encephalomyelitis virus (TMEV) VP1 during infection, a bioinformatics approach was used to predict a surface-exposed, linear epitope region of the protein for subsequent expression and purification. This region, comprising the N-terminal 112 amino acids of the protein, was then used for rabbit immunisation, and the resultant polyclonal antibodies were able to recognise full length VP1 in infected cell lysates by Western blot. Following optimisation, the antibodies were used to investigate the localisation of VP1 in relation to Hsp90 in infected cells by indirect immunofluorescence and confocal microscopy.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »