Synthesis and characterization of binary and ternary palladium alloys for use as alternative counter electrode catalysts in dye sensitized solar cells
- Authors: Zingwe, Nyengerai Hillary
- Date: 2020
- Subjects: Electrocatalysis Chemistry
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: http://hdl.handle.net/10353/18513 , vital:42580
- Description: The dye sensitized solar cell counter electrode facilitates the regeneration of the dye molecules thereby ensuring the provision of higher sunlight to electricity conversion efficiency. The standard platinum electrode suffers from low efficiency due to corrosion by the redox mediator as well as being extremely expensive due to high demand. As an alternative this research study illustrates the efforts undertaken to replace the standard platinum counter electrode with palladium alloy counter electrodes. Application of palladium alloys ensures sustenance of high catalytic activity by palladium which is as effective as platinum. Although palladium is equally as expensive as platinum, its application in the form of alloys minimizes the amount required to produce an effective counter electrode to 0.001-0.004 moles thereby ensuring the provision of high efficiency at a lower cost. Furthermore, charge transfer from the other alloyed elements to the palladium atom increases active sites leading to higher catalytic activity than platinum. Additionally, changes in crystal structure due to alloying enhances resistance to corrosion thus enabling the longevity of the alloy counter electrode in the electrolyte ___________________________________________________________________________ Electrochemical analysis was conducted to determine the catalytic functionality of the developed alloys in cobalt, ferrocene and iodine redox mediators. The binary (PdNi-reduced graphene oxide (rGO) and PdCo-rGO) and ternary (PdNiCo-rGO) palladium alloys were fabricated via a hydrothermal method. In order to determine the composition which could provide the maximum activity, optimization was conducted through variation of the molar ratios of the precursor solutions. The properties of the synthesized palladium alloys were determined using various techniques including x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The developed alloys were observed to comprise of palladium, nickel, cobalt, and carbon atoms. The particles were spherical in nature for all the unsupported alloys with the carbon supported alloys exhibiting spherical particle wholly surrounded by graphene sheets. Cyclic voltammetry and electrochemical impedance spectroscopy analysis showed that the carbon supported alloys PdNi-rGO, PdCo-rGO and PdNiCo-rGO produced the highest catalytic activities due to the synergy between their respective alloys and the incorporated reduced graphene oxide. The high catalytic effectiveness of these alloys yielded power conversion efficiency in the order PdNiCo-rGO (9.01) > PdNi-rGO (8.4.%) > PdCo-rGO (6.56%) > Pt (5.7%) which were better than the platinum efficiency in the cobalt redox mediator. The higher efficiency in the cobalt redox mediator relative to the iodine electrolyte illustrates that they are viable alternatives to the, corrosive and volatile iodine. Obtained results show that, the high recombination rates between the photogenerated electrons and the oxidized dye molecule which have been reported to reduce power conversion efficiency in one electron redox mediators did not affect the performance of the cell. However, these higher recombination rates affected the ferrocene electrolyte leading to extremely poor efficiency metrics. The obtained results indicated that reduced graphene oxide supported PdNi-rGO, PdNiCo-rGO as well as the unsupported PdNi3 alloys could successfully be implemented as substitutes to the platinum counter electrode in dye sensitized solar cells. The application of the palladium alloys is vital for improving stability and power conversion efficiency, as well as reducing cost.
- Full Text:
- Date Issued: 2020
Synthesis and characterization of MXS (M = Mo & V) and carbon supported MXS nanocomposites as Pt-free counter electrodes for electrode for DSSC application
- Authors: Bede, Asanda
- Date: 2020
- Subjects: Voltammetry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/18599 , vital:42612
- Description: It has been reported that the morphology, crystalline phase composition and electrochemical properties of counter electrode materials such MxS (Mo, V) and carbon supported MxS (Mo, V) composite nanomaterials was of considerable importance because it governs the efficiency of many photon assisted chemical and physical reactions in dye sensitized solar cells (DSSCs). The efficiency of DSSCs with composite counter electrode materials is reliant on the stability of the photochemistry reactions which can be optimized by appropriate doping levels of the composite materials. Moreover, the microstructure such as surface area, distribution of the MxS (Mo, V) and carbon supported MxS (Mo, V) composite nanomaterials, and the stability of the electrostatic bonds between the MxS (Mo, V) with the carbon support also play a significant role in the performance of the DSSCs. This work evaluates the effect of different mole ratios of the MxS (Mo, V) and carbon supported MxS (Mo, V) composite nanomaterials on the morphological, structural and electrochemical properties of the composite materials. MoS2 nanoflakes nanostructures have been synthesized by hydrothermal technique using sodium orthovanadate (Na2MoO4) as precursor. In this work Carbon supported MoS2 NFs have been prepared by physically/chemically mixing different mole ratios of MoS2 NFs with multi-walled carbon nanotubes (MWCNTs) and polyvinylidene in N-methyl-2-pyrrolidinone. The morphological, structural and electrochemical properties of the composite counter electrode materials have been investigated using SEM, XRD FTIR, TEM, RS and CV. SEM analysis has revealed the presence of large MoS2 nanoflakes (NFs) as synthesized. SEM analysis has also revealed significant change in the surface morphology of carbon supported MoS2 composite nanostructures with the change in the mole ratio of the MoS2 NFs and carbon support multi-walled carbon nanotubes. Structural analysis through HRTEM analysis revealed a d-spacing of 0.65 nm with a corresponding (002) lattice plane belonging to a trigonal crystalline phase of MoS2. Also, HRTEM analysis has revealed d-spacing of 0.291 nm corresponding to 002 plane of MWCNTs. Raman spectroscopy has revealed Characteristic Raman vibration frequencies and symmetries at 264.6 cm-1(Eg), 354.2 cm-1 (Ag ) belonging trigonal phase of MoS2 (1T-MoS2). FTIR analysis has revealed a narrow peak at 457.6 cm-1 due Mo-S vibration bond. This observation confirms the success of synthesis of MoS2 nanostructures. Cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy (EIS) measurements have revealed that the ratio 6:3:1 have shown to be optimum ratio due to its large reduction rate compared to pristine MoS2 NFs and other carbon supported MoS2 NFs. Calculated Rreduction for the carbon supported MoS2 NFs is the order 3:6:1>1:8:1>6:3:1>8:1:1 indicating the trend of ratio 3:6:1 appeared to have higher reduction rate than the rest of the material and it had far less ΔEpp than the rest of other ratios. All CV curves for both pristine MoS2 NFs and carbon supported MoS2 NFs confirmed a distinct Faradic characteristic. The VS2 nanosheets (NSs) and carbon supported VS2 NSs were also effectively synthesized via hydrothermal method. The SEM micrographs for VS2 NSs and carbon supported VS2 NSs samples reveals level increased. Furthermore, SEM-EDX analysis have confirmed the presence of V and S as well as C and O on carbon supported VS2 nanocomposites, and it clearly shown a gradually blending as the ratios increases. The structural studies through XRD analysis have revealed peaks at 2θ angles of 15.4◦, 28.2◦, 34.2◦, 36.2◦, 43.3◦,48.3◦, 54.4◦, 57.7◦ and 66.2◦ which correspond to the lattice planes (001), (002), (100), (011), (102), (003), (110), (103) and (201) belonging to hexagonal VS2 (H-VS2) crystalline phase as per JCPDS card 36-1139. The HRTEM have revealed that the VS2 NSs have an edge to edge length of ~ 0.294 – 1.248 µm. Also, HRTEM micrographs of VS2 NSs have revealed interplanar d spacing of 0.571 nm belonging to the (001) lattice plane of hexagonal VS2 (H-VS2) structure. FTIR analysis have shown a peak at 558 cm-1 attributed to V-S which is evident that sulfur has bonded with the metal (V) and is in agreement with EDS. CV, CD and EIS measurements have shown that the ratio 1:8:1 is more superior to VS2 NSs and other carbon supported VS2 NSs. Based on Rreduction for the carbon supported nanosheets VS2 nanosheets are ordered as 1:8:1>3:6:1>6:3:1>8:1:1. Carbon supported VS2 NSs of the mole ratio 1:8:1 showed a small resistance of 0.32 Ω. This is further evidence that the carbon supported VS2 NSs of the mole ratio 1:8:1 in addition to revealing excellent catalytic behaviour is also more chemically stable and has good conductivity properties._________
- Full Text:
- Date Issued: 2020
Synthesis and in vitro biological evaluation of 2,3-substituted quinoline derivatives
- Authors: Bokosi, Fostino Raphael Bentry
- Date: 2020
- Subjects: Quinoline , Malaria Chemotherapy , Tuberculosis Chemotherapy , African trypanosomiasis Chemotherapy
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/163193 , vital:41017
- Description: The urgent need for new systemic pharmacological entities prompted us to report a library of 2,3-substituted quinoline derivatives. Considering the ubiquity of quinoline-containing compounds in pharmacologically active small molecules, synthesized 2,3-substituted quinoline derivatives were in vitro biologically evaluated for their potential antitubercular, antimalarial and antitrypanosomal activities. Quinoline scaffold was achieved by the Vilsmeier-Haack methodology, affording synthetically useful chloro and formyl substituents on C-2 and C-3 respectively. These two substituents acted as handles in expanding the chemical space around the quinoline ring. Target compounds were synthesized in six to seven steps, employing conventional synthetic organic protocols adapted from various literature. The final compounds were accessed in moderate to good yields. The structural identity of each compound was confirmed by common spectroscopic techniques. Aryl quinoline carboxamide derivatives 3.113 – 3.126 were isolated as rotamers, hence, Variable-Temperature Nuclear Magnetic Resonance (VT-NMR) was employed in resolving 1H splitting. At elevated temperature (~328 K); N-methylene carbons were not visible on 13C NMR due to signal line broadening effects. The presence of these nuclei in such cases was, however, supported by 2-dimensional NMR and high-resolution MS data. Most of the compounds achieved in this study displayed promising antimalarial activity against chloroquine-sensitive 3D7 strain of Plasmodium falciparum compared to antitrypanosomal activity against Trypanosoma brucei brucei 427 strain. In particular, compounds 3.80 and 3.108 showed superior activity against chloroquine-sensitive 3D7 P. falciparum strain with IC50 values < 1 μM. More importantly, most of the compounds were non-toxic as determined by HeLa cells, indicating their selectivity towards the parasites. Exploring the space provided on the quinoline scaffold revealed that methoxy incorporation on C-2 is very critical in enhancing antimalarial activity of this class of quinoline compounds. The preliminary SAR of compounds 3.57 – 3.72 showed that compounds containing the 3-cinnamate exhibited enhanced antimalarial activity compared to 2 and 4-cinnamates. Finally, benzamide compounds 3.113 − 3.126 showed poor activity against Mycobacterium tuberculosis H37Rv strain with only compounds 3.113, 3.117 – 3.120 and 3.126 showing appreciable MIC90 values in the range of 40 – 85 μM. , Thesis (MSc) -- Faculty of Science, Chemistry, 2020
- Full Text:
- Date Issued: 2020
Synthesis and pharmacological evaluation of chlorin derivatives for photodynamic therapy of cholangiocarcinoma
- Authors: Gao, Ying-Hua , Li, Man-Yi , Saijad, Faiza , Wang, Jin-Hai , Meharban, Faiza , Gadoora, Malaz A , Yan, Yi-Jia , Nyokong, Tebello , Chen, Zhi-Long
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190873 , vital:45036 , xlink:href="https://doi.org/10.1016/j.ejmech.2020.112049"
- Description: Photodynamic therapy (PDT) has been developed as a promising therapeutic method in cancer treatment. The discovery of effective photosensitizer, which is the key factor of PDT, is highly desired. This paper reports the synthesis of novel chlorin derivatives, 5,10,15,20-tetraphenyl-[2:3]-[(methoxycarbonyl, carboxy)methano] chlorin I and 5,10,15,20-tetraphenyl-[2:3]- {[methoxycarbonyl, (2-hydroxyethyl)amide]methano}chlorin II. Their structures were characterized with UV–vis, 1HNMR, 13CNMR and HRMS spectroscopies. Photophysical and photochemical experiments results showed that compound I and II had an absorption maximum around 650 nm, with molar extinction coefficients of 1 × 104 M−1 cm−1. They had strong fluorescence emission in 650–660 nm upon excitation with 419–422 nm light. ESR showed that singlet oxygen was produced upon irradiation of compounds with 650 nm light in the presence of molecular oxygen. The photo-bleaching test indicated that the structure of compounds was stable. These new compounds exhibit excellent anti-tumor effects and lower toxicity compared to m-THPC in vitro and in vivo. Compound I and II had high tumor selectivity, which could induced tumor cells shrinkage and necrosis under 650 nm laser irradiation. Flow cytometry revealed that the compounds might mediate PDT effect at late apoptotic phase. These results make these compound I and II promising candidates for future study in photo-diagnosis and photodynamic therapy of cholangiocarcinoma.
- Full Text:
- Date Issued: 2020
Synthesis of 2,4-Xylidine in continuous flow systems
- Authors: Sagandira, Mellisa Brenda
- Date: 2020
- Subjects: Chemistry, Physical and theoretical -- Research , Chemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/49270 , vital:41616
- Description: The continuous flow synthesis of 2,4-xylidine, an important compound in the fine chemical, pharmaceutical as well as the dyes and pigments industries was investigated in this study utilizing 1,3-dimethylbenzene as starting material. The first step involves the highly exothermic nitration of 1,3-dimethylbenzene with mixed acid to afford two nitro isomers, namely 1,3-dimethyl-2-nitrobenzene and 2,4-dimethyl-1-nitrobenzene. Since 2,4-xylidine is the targeted isomer, it is important to get a higher proportion of its nitration precursor 2,4-dimethyl-1-nitrobenzene. A safe and efficient synthesis of 2,4-dimethyl-1-nitrobenzene was therefore developed in continuous flow. This was aided by the micro reactor’s large surface area-to-volume ratio, one of the many features of continuous flow synthesis that enable rapid dissipation of heat allowing exothermic reactions to be conducted safely at ambient or higher temperatures. Two nitration protocols were developed using different micro reactors, a sonicated 1 ml PTFE tube reactor and 2 ml Uniqsis chip reactor. Using a sonicated PTFE tube reactor at room temperature and 15 min residence time, 2,4-dimethyl-1-nitrobenzene was afforded in 100 % conversion and 80 % selectivity. An increase in selectivity to 95 % and 90 % conversion towards 2,4-dimethyl-1-nitrobenzene was achieved using a 2 ml Uniqsis chip reactor at room temperature in 6 min residence time. This was accounted for due to efficient mixing of the two phases brought about by the reactor’s mixing structures, which are designed to create turbulent mixing. Scale-up synthesis of 2,4-dimethyl-1-nitrobenzene was conducted in a 4.5 ml LTF-XXL-ST-04 reactor at room temperature and 6 min residence time affording 90 % conversion and 95 % selectivity with a throughput of 16.6 g/h. Subsequently, reduction of 2,4-dimethyl-1-nitrobenzene to afford 2,4-xylidine was investigated in a 1 ml PTFE tube reactor (0.8 mm ID) using hydrazine in the presence of iron (III) 2,4-pentanedionate catalyst. Maximum conversion of 75 % was achieved at 170 °C in 15 min residence time. A more efficient reduction protocol was developed in a 2.7 ml packed column reactor (10 mm ID) using hydrazine in the presence of Pd/C at 50 °C and 2.5 min residence time affording 94 % conversion towards 2,4-xylidine. Lastly, multistep synthesis of 2,4-xylidine was performed using optimum conditions found using the 2 ml Uniqsis chip reactor and 2.7 ml packed column reactor with the incorporation of a phase separator. Joining the two reactors into a single continuous step afforded 100 % conversion and 95 % selectivity towards 2,4-xylidine with 8 min total residence time. Nitration of other organic compounds followed by reduction of the resultant nitro products was also investigated under respective optimum conditions determined for nitration of 1,3-dimethylbenzene and reduction of 2,4-dimethyl-1-nitrobenzene.
- Full Text:
- Date Issued: 2020
Synthesis of novel heterocyclic systems as potential inhibitors of HIV-1 enzymes
- Authors: Sekgota, Khethobole Cassius
- Date: 2020
- Subjects: Protease inhibitors , Heterocyclic compounds , HIV (Viruses) , Quinoline , Amides , Nuclear magnetic resonance , Antiretroviral agents , AIDS vaccines , Nitrobenzaldehyde , Propylphosphonic acid anhydride
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/146502 , vital:38531
- Description: This study has focussed on the application of Baylis-Hillman methodology in the development of efficient synthetic pathways to libraries of novel 3-[(N-cycloalkylbenzamido)methyl]-2-quinolones and indolizine-2-carboxamides and on an exploration of their medicinal potential. The approach to 3-[(N-cycloalkylbenzamido)methyl]-2(1H)-quinolones involved a six-step pathway comprising: Baylis-Hillman reaction of 2-nitrobenzaldehyde derivatives and methyl acrylate to afford nitro-Baylis-Hillman adducts; thermal cyclisation of the adducts to give a range of 3-(acetoxymethyl)-2(1H)-quinolones in good to excellent yields; hydrolysis of the acetates; conversion of the resulting alcohols to the 3-chloromethyl analogues; amination; and, finally, acylation to afford the target amides. Variable temperature NMR methods were used to facilitate analysis of the ¹H and ¹³C NMR spectra which were complicated by internal rotation and cycloalkyl ring-flipping effects. On the other hand, the indolizine-2-carboxamides were obtained in several steps commencing with the Baylis-Hillman reaction of pyridine-2-carboxaldehyde and methyl acrylate. Thermal cyclisation of the Baylis-Hillman adduct afforded indolizine esters, hydrolysis of which gave the corresponding acids which served as precursors to the target indolizine-2-carboxamides. The final amidation step, however, proved to be particularly challenging. Various coupling strategies were explored to access indolizine-2-carboxamides. These included the use of 2,2,2-trifluoroethyl borate which showed limited promise, but propylphosphonic acid anhydride (T3P) proved to be the most effective coupling agent, permitting the formation of 24 novel indolizine-2-carboxamides from hydrazines, aliphatic amines and a range of heterocyclic amines. A high-field NMR-based kinetic study of the mechanism of the Baylis-Hillman reaction of pyridine-4-carboxaldehyde and methyl acrylate in the presence of 3-hydroxyquinuclidine in deuterated chloroform was initiated, reaction progress being followed by the automated collection of ¹H and DEPT 135 NMR spectra over ca. 24 hours using a high-field (600 MHz) NMR instrument. The results have provided critical new insights into the mechanism. NMR analysis has also been used to elucidate the multiplicity of signals associated with rotameric equilibria observed at ambient probe temperature. Variable temperature 1D- and 2D-NMR spectra were used to facilitate the unambiguous characterisation of the 2-quinolone benzamides and some of the indolizine-2-carboxamides. The 3-[(N-cycloalkylbenzamido)methyl]-2(1H)-quinolones, together with selected precursors, and a number of the indolizine-2-carboxamides have been screened in vitro as potential HIV-1 enzyme inhibitors. A survey of the activity of the 2-quinolones against HIV-1 integrase, protease and reverse transcriptase revealed selective inhibition of HIV-1 integrase with the most active IN inhibitor, 3-[(cyclopentylamino)methyl-6-methoxy-2(1H)-quinolone 115e, producing residual enzyme activity of 40% at a concentration of 20 μM. Many of the 2-quinolones exhibited no significant cytotoxicity against HEK 293 cells at 20 μM concentrations. 3-[(N-Cyclohexylamino)methyl]-6-methoxy-2(1H)-quinolone 114e was the only compound to exhibit ant-plasmodial activity (55% pfLDH activity). The survey of indolizine-2-carboxamides also revealed encouraging inhibition against HIV-1 integrase. None of these compounds exhibited cytotoxicity at 20 μM against HEK 293 cells, while a number of them exhibited some activity against Plasmodium falciparum (3D7 strain) and Trypanosoma brucei. Selected indolizine-2-carboxamides exhibited significant anti-tubercular activity in the 7H9 CAS GLU Tx and 7H9 ADC GLU Tw media. In view of the inherent fluorescent character and biological potential of the synthesised indolizine-2-carboxamides, their photophysical properties were explored to establish their possible dual use as bio-imaging and therapeutic agents. The major absorption and corresponding emission bands, and the associated molar absorption coefficients (Ɛ) expressed in the form of log Ɛ were determined. Their high extinction coefficients, large Stokes shift and red-shifted emissions in the visible region indicate their potential for use as fluorophores.
- Full Text:
- Date Issued: 2020
Synthesis of novel Schiff base cobalt (II) and iron (iii) complexes as cathode catalysts for microbial fuel cell applications
- Authors: Sen, Pinar , Akagunduz, Dilan , Aghdam, Araz S , Cebeci, Fevzi C , Nyokong, Tebello , Catal, Tunc
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190861 , vital:45035 , xlink:href="https://doi.org/10.1007/s10904-019-01286-x"
- Description: In this study, the synthesis and characterization of a new Schiff base and its cobalt(II) and iron(III) complexes were performed fully characterized by common spectroscopic techniques such as 1H-NMR, 13C-NMR, FT-IR, UV–Vis and MS and elemental analysis. The cathodes prepared with only activated carbon, Co-Schiff base complex, and Fe-Schiff base complex mixed with activated carbon as the carrier were examined in single chamber air cathode microbial fuel cells (MFCs). The spectroscopic results confirm the structure of novel Schiff base and its complexes with cobalt (II) and Fe(III). MFC results showed that Fe-Schiff base complex generated higher voltage generation using glucose as the carbon source. Cyclic voltammetry results showed the conductivity and catalytic features of the cathodes developed in this study. Scanning electron microscopic results showed the distribution the complexes on the cathode surface. In conclusion, a novel Schiff base and its complexes with cobalt (II) and iron (III) can be employed into MFC technology to be used in green electricity production, and might help decreasing the operating costs of wastewater treatment plants.
- Full Text:
- Date Issued: 2020
Synthesis of novel Schiff base cobalt (II) and iron (iii) complexes as cathode catalysts for microbial fuel cell applications
- Authors: Sen, Pinar , Akagunduz, Dilan , Aghdam, Araz Sheibani , Cebeci, Fevzi C , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187015 , vital:44556 , xlink:href="https://doi.org/10.1007/s10904-019-01286-x"
- Description: In this study, the synthesis and characterization of a new Schiff base and its cobalt(II) and iron(III) complexes were performed fully characterized by common spectroscopic techniques such as 1H-NMR, 13C-NMR, FT-IR, UV–Vis and MS and elemental analysis. The cathodes prepared with only activated carbon, Co-Schiff base complex, and Fe-Schiff base complex mixed with activated carbon as the carrier were examined in single chamber air cathode microbial fuel cells (MFCs). The spectroscopic results confirm the structure of novel Schiff base and its complexes with cobalt (II) and Fe(III). MFC results showed that Fe-Schiff base complex generated higher voltage generation using glucose as the carbon source. Cyclic voltammetry results showed the conductivity and catalytic features of the cathodes developed in this study. Scanning electron microscopic results showed the distribution the complexes on the cathode surface. In conclusion, a novel Schiff base and its complexes with cobalt (II) and iron (III) can be employed into MFC technology to be used in green electricity production, and might help decreasing the operating costs of wastewater treatment plants.
- Full Text:
- Date Issued: 2020
Synthesis of peptidomimetic compounds as HIV-1 protease inhibitors
- Authors: Kayembe, Jean-Pierre
- Date: 2020
- Subjects: Protease inhibitors , HIV (Viruses) , HIV infections Treatment , Peptidomimetics
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/124397 , vital:35604 , DOI https://dx.doi.org/10.21504/10962/124397
- Description: This research project has involved the design, synthesis and evaluation of novel peptidomimetics compounds as HIV-1 protease inhibitors. Here is presented one-step, two-step and three-step syntheses and the in vitro bio-assay studies of a series of fully characterized peptidomimetics as HIV-1 protease inhibitors candidate using the shortest and most cost effective synthetic routes. The first series of compounds were accessed via a synthetic elaboration of Morita-Baylis-Hillman adducts by a Michael addition with benzylamine, proline or glycine esters to afford a series of β-amino-β’-hydroxycarboxylate esters in moderate to good yields. Base-catalyzed cyclization of non-benzylated aza-Michael adducts afforded a series of coumarin-3-hydroxy-2-methylenepropanoate esters in moderate yields. The uncatalyzed direct amidation of diethyl tartrate/tartaric acid and tartaric acid osazone with selected amines/amino acids afforded a series of C2-symmetrical and unsymmetrical 1,2-dihydroxycarboxylates in moderate to very high yields. All the synthesized compounds were fully characterized using spectroscopic techniques. These conjugates, designed as potential HIV-1 inhibitors, were tested against the HIV-1 protease enzyme. A number of these ligands have exhibited inhibition levels and IC50 values comparable to ritonavir, permitting, therefore, their identification as lead compounds for the development of novel inhibitors. , Thesis (PhD) -- Faculty of Science, Chemistry, 2020
- Full Text: false
- Date Issued: 2020
Synthesis of pH sensitive dual capped CdTe QDs: their optical properties and structural morphology
- Authors: Daramola, Olamide A , Noundou, Xavier S , Nkanga, Christian I , Tseki, Potlaki F , Krause, Rui W M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/156364 , vital:39983 , https://doi.org/10.1007/s10895-020-02526-x
- Description: We herein report five different types of thiol dual capped cadmium tellurite quantum dots (CdTe QDs) namely glutathionemercapto-propanoic acid (QD 1), glutathione-thiolglycolic acid (QD 2), L-cysteine-mercapto-propanoic acid (QD 3), L-cysteinethiol-glycolic acid (QD 4) and mercapto-propanoic acid-thiol-glycolic (QD 5). Dual-capped CdTe QDs were prepared using a one pot synthetic method. Cadmium acetate and sodium tellurite were respectively used as cadmium and tellurium precursors. Photo-physical properties of the synthesized QDs were examined using UV-Vis and photoluminescence spectroscopy while structural characterization was performed by means of transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy.
- Full Text:
- Date Issued: 2020
Synthesis, characterisation and antitumour activities of lanthanide complexes with hydrazones and carboxylic acid ligands
- Authors: Madanhire, Tatenda
- Date: 2020
- Subjects: Organic acids
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/48456 , vital:40878
- Description: The tridentate hydrazone ligands, (E)-N'-(2-hydroxybenzylidene)benzohydrazide (H2phen) and (E)-N'-(2-hydroxybenzylidene)nicotinohydrazide (H2Nic), were synthesised and complexed to Ln(III) acetates. The centrosymmetric, acetato-bridged dinuclear coordination compounds with the formulae, [La2(Hphen)2(OAc)4(H2O)2]·DMF·H2O (1), [Ln2(HNic)2(OAc)4(H2O)2]·DMF·H2O (Ln = La (2) and Nd (3)) and [Ln2(HNic)2(OAc)4(H2O)2]·DMF (Ln = Er (4) and Yb (5)) were isolated and characterised by elemental analyses, IR spectroscopy, UV-Vis spectroscopy, X-ray diffraction studies and SHAPE 2.1. The nine-coordinate complexes 1–3 crystallise in the triclinic space group P-1, with the metal centres having the distorted spherical capped square antiprism geometry (C4v), while the eight-coordinate Er(III) and Yb(III) complexes (monoclinic system, space group P21/c) display the geometry of distorted triangular dodecahedron (D2d). Geometry optimisation of the monoanionic forms of the hydrazone ligands (Hphen– and HNic– ) were performed using Density Functional Theory (DFT) with Becke’s three parameter hybrid method and correlation functional of Lee, Yang and Parr (B3LYP) with augcc-pVTZ basis set. Natural population analysis (NPA) and molecular electrostatic potential (MEP) maps indicated that the most preferred sites for electrophilic attack in the anionic ligands are the phenolate and carbonyl oxygens, and the azomethine nitrogens. The evaluation of the cytotoxic activity of the compounds on breast cancer (MCF-7), the endometrial carcinoma (HEC-1A) and the human monocytic (THP-1) cell lines using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) assay revealed that the hydrazone ligands and complexes 1–4 are partially cytotoxic against MCF-7 cells, while the Schiff bases and complexes 3–5 significantly inhibit cell growth in HEC-1A cells. The complexation reactions of Ce(III), Nd(III), Gd(III) and Er(III) with the chelating/ bridging monoanionic ligand N-(2,6-dimethylphenyl)oxamate (Hpma– ) in basic media were performed in view of the potential applications of oxamate derivatives as cytotoxic agents. The coordination compounds were characterised by different Abstract T. Madanhire Nelson Mandela University xxvi physico-chemical techniques: elemental analysis, conductivity measurements, IR, 1 H NMR and UV-Vis-NIR spectroscopy. The anionic Hpma– was obtained through conversion of the proligand ethyl (2,6-dimethylphenylcarbamoyl)formate (Hdmp). The reactions afforded lanthanide(III)–oxamate coordination polymers of formulae: {[Ln(Hpma)3(MeOH)(H2O)]∙2MeOH}n (Ln = Ce (1) and Nd (2)), {[Gd2(Hpma)6(MeOH)4]∙6MeOH}n (3), {[Er2(Hpma)6(MeOH)(H2O)3]∙2MeOH}n (4) and [Ln2Na2(Hpma)8(EtOH)(H2O)6]n (Ln = Nd (5) and Gd (6)). The polymeric complexes feature Ln-Hpma moieties bridged by μ2-η 1 :η 1 :η 1 Hpma– , giving onedimensional zig-zag chains of the –Ln–O–C–O–Ln– type. Atomic charge analysis and the MEP map of the Hpma– moiety done using the DFT/B3LYP method were found to be consistent with the chelating and bridging modes of the anionic ligand through all the oxygen atoms. The evaluation of the cytotoxic activities of the metal salts, the proligand and the novel lanthanide complexes on MCF-7, HEC-1A and THP-1 cell lines revealed that only the rare-earth metal salts [Ce(NO3)3∙6H2O] and [Nd(NO3)3∙6H2O] showed modest cytotoxicity against MCF-7 and HEC-1A cells, respectively.
- Full Text:
- Date Issued: 2020
Synthesis, characterisation and electrocatalytic behaviour of three series of Metal Organic Frameworks
- Authors: Murinzi, Tafadzwa Wendy
- Date: 2020
- Subjects: Electrochemistry , Metal-organic frameworks , Polyoxometalates , Fourier transform infrared spectroscopy , Electrocatalysis , Cysteine
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167598 , vital:41495
- Description: Metal organic frameworks (MOFs) have received a lot of attention over the past few years due to their vast range of interesting properties and applications, such as catalysis, environmental sensing and storage. This wide range of potential applications is afforded by careful selection and manipulation of the components chosen in assembling of MOFs. In this study, three series of MOFs were synthesized from Co(II), Cu(II) and Mo(VI) polyoxometallates with either 1,3,5-benzenetricarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid or 2,6- pyridinedicarboxylic acid as the ligands. In series 1, the common 1,3,5- benzenetricarboxylic acid MOF, HKUST-1, and POM modified HKUST-1 compounds involving encapsulation and encorporation of the POM were utilised. In series 2, flexible cobalt(II) benzenepolycarboxylate MOFs which investigated the effect of varying the degree of carboxylate substituent were utilised. In series 3, flexibly reduced heterocyclic polycarboxylate MOFs using 2,6-pyridine dicarboxylate were utilised. Solvothermal and slow evaporation synthesis conditions were employed. Where single crystals of good quality were produced, single crystal X-ray diffraction (SC-XRD) was employed for structural elucidation. In the absence of such crystals, a combination of elemental analysis, inductively coupled plasma optical emission spectrometry (ICP-OES) and powder X-ray diffraction (PXRD) was used. Characterization of the MOFs was done by Fourier transform infrared spectrometry (FTIR) and thermal methods, namely thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The electrocatalytic potential of the compounds in the oxidation of L-cysteine was then investigated using a variety of techniques. Cyclic voltammetry was used for L-cysteine detection whilst chronoamperometry and differential pulse voltammetry were used to determine the nanoprobes’ sensitivity, rate constants and detection limits. Electrochemical impedence spectroscopy was used to investigate the charge transfer resistance (RCT) and electron transfer kinetics. Of the three, series 3 gave the best signals and sensitivities for electrocatalysis of L-cysteine followed by series 2 and lastly series 1. Series 2 showed the highest stability and series 1 required the least overpotential. The results highlight the effects of different metal centres and ligands on electrocatalysis. The application of MOFs in electrochemistry is a relatively new field making the findings of this study a significant addition to the body of knowledge.
- Full Text:
- Date Issued: 2020
Synthesis, characterization and biological activity of some Dithiourea Derivatives:
- Authors: Odame, Felix , Hosten, Eric C , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, Carminita L , Lobb, Kevin A , Tshentu, Zenixole R
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163046 , vital:41007 , DOI: 10.17344/acsi.2019.5689
- Description: Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis.
- Full Text:
- Date Issued: 2020
Synthesis, crystal structures and characterization of metal–organic framework architectures involving dinuclear copper(ii) benzoic acid derivative complexes
- Authors: Ndima, Lubabalo
- Date: 2020
- Subjects: Supramolecular chemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/46783 , vital:39657
- Description: Structural copper(II) complexes with aromatic carboxylic acids show a wide spectrum of coordination schemes. Studies of dicopper(II) carboxylates have been associated with a variety of interests for their catalytic, biological and magnetic applications [1]. Various novel dinuclear copper(II) complexes [Cu2(X-benzoate)4L2] with varying substituents (X = CH3, F, Cl, Br, I, NO2 & OCH3) with a desired octahedral geometry have been synthesized. The various complexes were characterized by single crystal X-ray diffraction studies, spectroscopic and thermal methods (UV/Vis, FTIR and TGA, DSC). In most cases, the structures consists of centrosymmetric dimers in which the Cu atoms show a square pyramidal CuO5 coordination. In all cases, dimeric paddle wheel complexes where two copper(II) ions are held together by four benzoates (forming syn– syn bridges between the copper atoms) and the apical coordination site occupied by a solvent ligand (L) or supramolecular linker were obtained. The dimers are extended into 1D chains that result from hydrogen bonding between the coordinated methanol (solvent ligand) on one Cu(II) and the carboxylate group on an adjacent Cu(II) dimer, including interactions arising from various substituents. π–π Stacking interactions are found to be present in the various crystal structures forming 3D supramolecular array. FTIR and UV/Vis spectra of each complex have shown how the resonance and inductive effect of each substituent affects spectral data of each complex.
- Full Text:
- Date Issued: 2020
Synthesis, crystal structures and molecular modelling of rare earth complexes with bis(2-pyridylmethyl)amine and its derivatives : a quantum chemical investigation of ligand conformational space, complex intramolecular rearrangement and stability
- Authors: Matthews, Cameron
- Date: 2020
- Subjects: Rare earths , Complex compounds , Ligands
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10948/46229 , vital:39517
- Description: Limited research has been performed on the coordination behaviour of hybrid aliphatic and heterocyclic polyamines with trivalent rare earth elements. The rare earth coordination properties of several Nalkylated derivatives of the tridentate ligand bis(2-pyridylmethyl)amine (DPA, HL1) backbone - involving the rare earth elements Y, La-Nd, Sm, Eu and Tb-Lu - have been investigated in this study However, the structural and energetic characteristics of DPA coordination with rare earth elements (REE) have not been studied thus far. Potential applications of DPA-based rare earth complexes are primarily dependent on their electronic and magnetic characteristics, which are affected weakly by the coordination environment, where potential applications may include use as Lanthanide Shift Reagents (LSR), Luminescence probes and small-molecule magnets (SMM). A systematic conformational search of DPA was carried out in this study in order to identify the global minimum conformer and for comparison of the free and coordinated geometries, using the M06(D3) functional belonging to the Density Functional Theory (DFT) family of model chemistries. An understanding of the aforementioned would play an important role in analysis of bulk characterization and the prediction of the reactivity of DPA. Final geometries and electronic energies were obtained from the ‘domain based local pair natural orbital’ (DLPNO)-Møller-Plesset and -coupled cluster theoretical methods, as follows: DLPNO-CCSD(T0)/aug-cc-pVQZ//DLPNO-MP2/aug-cc-pVTZ. Fifteen Single-crystal X-ray diffractometer (SC-XRD) crystal structures of mononuclear rare earth chloride coordination complexes with DPA (RE = La-Nd, Sm, Eu, Tb-Lu and Y) were obtained and geometrically analysed in this study. Three isostructural series of constitutional isomers were identified, consisting of one series of nine-coordinate molecule (M1) and two series of eight-coordinate ion pairs (M2 and M3). This conformational diversity is most likely due the flexible nature of the DPA backbone, as well as the additional stability gained from reduced coordination spheres as a function of decreasing rare earth ionic radii across the lanthanide series (Lanthanide contraction). A Quantum Theory of Atoms-in-Molecules (QTAIM) topological analysis was performed in order to identify and characterise potential hydrogen bonding interactions in H-optimised crystal structures. The crystal structures of five dinuclear (RE = Tb-Tm) and two tetranuclear (RE = Yb and Lu) rare earth chloride complexes with DPA have also been structurally analysed. Furthermore, one mononuclear (RE = Dy), two dinuclear complexes (RE = Dy and Lu) with EtDPA, and one mononuclear complex with the DPA-derivative HL4 (RE = Dy) were structurally characterised. A DFT study of the theoretical interconversion of one real- and two hypothetical- mononuclear lanthanum containing isostructural series (cf. aforementioned crystal structures) was undertaken in order to gain a deeper understanding of the processes involved, in terms of the participating minimum energy paths (MEPs), intermediates and transition states – as determined via the Nudged-Elastic Band (NEB) procedure. This hypothesis is supported by the well-known conformational lability of rare earth complexes, due to the weak/minor covalency of their coordination bonds. An attempt was made to determine the respective energies of one real- and two hypothetical diamagnetic or ‘closed-shell’ constitutional isomers containing the rare earth ions La3+(M1), Y3+(M2) and Lu3+ (M3). It was assumed that the most stable isomers have a greater probability of being observed as the asymmetric unit of the complex crystal structure – assuming weak contributions of lattice or intermolecular interactions towards the geometry of the asymmetric unit.
- Full Text:
- Date Issued: 2020
Synthesis, photophysicochemical properties and photodynamic therapy activities of indium and zinc phthalocyanines when incorporated into Pluronic polymer micelles
- Authors: Motloung, Banele Mike
- Date: 2020
- Subjects: Indium , Zinc , Phthalocyanines , Polymers , Photochemotherapy , Micelles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167529 , vital:41489
- Description: This thesis reports on the syntheses, photophysicochemical properties and photodynamic therapy activities of symmetrical metallophthalocyanines (MPcs) when alone or when incorporated into Pluronic polymer micelles. The Pcs contain either zinc or indium as central metals and have phenyldiazenylphenoxy, pyridine-2-yloxy and benzo[d]thiazol-2-ylthio as ring substituents. Spectroscopic and microscopic techniques were used to confirm the formation MPcs with micelles. The photophysics and photochemistry of the Pcs were assessed when alone and with micelles. All the studied Pcs showed good photophysicochemical behavior with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yields. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy atom effect obtained from the former. The in vitro dark cytotoxicity and photodynamic therapy of the Pc complexes and conjugates against MCF7 cells was tested. All studied Pc complexes alone and with micelles showed minimum dark toxicity making them applicable for PDT. All complexes displayed good phototoxicity < 50% cell viability (except for complex 2 > 50% cell viability) at concentrations ≤100 μg/mL, however the conjugates showed < 45% cell viability at concentrations ≤ 100 μg/mL, probably due to the small micellar size and EPR effect. The findings from this work show the importance of incorporating photosensitizers such as phthalocyanines into Pluronic polymers micelles and making them water soluble and ultimately improving their photodynamic effect.
- Full Text:
- Date Issued: 2020
Synthesis, structure and in vitro anti-trypanosomal activity of non-toxic Arylpyrrole-Based Chalcone derivatives:
- Authors: Zulu, Ayanda I , Oderinlo, Ogunyemi O , Kruger, Cuan , Isaacs, Michelle , Hoppe, Heinrich C , Smith, Vincent J , Veale, Clinton G L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/179017 , vital:40096 , https://doi.org/10.3390/molecules25071668
- Description: With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.
- Full Text:
- Date Issued: 2020
Synthetic, characterization and cytotoxic studies of ruthenium complexes with Schiff bases encompassing biologically relevant moieties:
- Authors: Maikoo, Sanam , Dingle, Laura M K , Chakraborty, Abir , Xulu, Bheki , Edkins, Adrienne L , Booysen, Irvin N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165429 , vital:41243 , https://doi.org/10.1016/j.poly.2020.114569
- Description: This research study describes the formation and characterization of novel paramagnetic ruthenium complexes, cis-Cl, trans-P-[RuIIICl2(carboim)(PPh3)2] with bidentate chelating carbohydrazide Schiff bases (carboim = bpc for 1, ttc for 2 and tpc for 3). These metal complexes were synthesized by the equimolar coordination reactions of trans-[RuCl2(PPh3)2] with N-[1,3-benzothiazole-2-ylmethylidene]pyridine-2-carbohydrazide (Hbpc), N-((uracil-5-yl)methylene)thiophene-2-carbohydrazide (Httc) and N-[(uracil-5-yl)methylidene]pyridine-2-carbohydrazide (Htpc), respectively. Physicochemical techniques including nuclear magnetic resonance-, electron-spin resonance- and infrared spectroscopy, UV–Vis spectrophotometry, voltammetry as well as molar conductivity measurements provided definitive determinations of the respective ruthenium compounds’ structures.
- Full Text:
- Date Issued: 2020
System analysis of fatigue in pilots and co-pilots executing short-hall flight operations
- Authors: Bennett, Cleo Taylor
- Date: 2020
- Subjects: Air pilots -- Health and hygiene , Fatigue , Work environment -- Psychological aspects , Work environment -- Physiological aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/146622 , vital:38543
- Description: Background: This study was conducted as part of Denel’s South African Regional Aircraft (SARA) development project. Regional aircraft have a maximum flight time of 60 minutes. Hence, the study focuses on matters pertaining to the short-haul flight context. Pilot fatigue has been recognised as a safety concern in the aviation industry. It impacts on pilot performance across the board, not least in the short-haul context. However, the specific factors that lead to pilot fatigue in short-haul operations have not been well researched. Research Aim: To identify and examine the factors which influence pilot/co-pilot fatigue in short-haul aviation contexts. Method: Fatigue is multifaceted, and has multiple definitions and descriptions. It is acknowledged as a complex phenomenon, the development of which is dynamically influenced by various factors. Thus, a systems approach based on the work system model by Smith and Carayon-Sainfort (1989) was adopted for this study. A systems analysis was conducted in two parts: 1) a literature analysis, and 2) expert interviews. Results: Both the literature analysis and the interviews indicated that pilot fatigue in short-haul flight operations represent composite system outcomes influenced by various factors. The factors identified were structured (systematised) into categories, namely organizational factors, task-related factors, environmental factors, factors linked to technology and tools, and non-work-related factors specific to the individual pilot. An example of a task-related factor would be the performance by pilots of multiple take-offs and landings; organizational factors include work time arrangements and duty scheduling (e.g. unpredictable schedule, early starts/late finishes, number of flight sectors in a shift, extended working hours, numerous consecutive work days, standby duties, flight, duty and rest limitations (regulations and guidelines); and short turnaround periods); environmental factors might include the small pressurised cockpit environment, movement restriction, very low humidity, low air pressure, vibrations, high noise levels, low light intensity light, and inclement weather); there are many examples of how tools and technology utilized by pilots might affect their fatigue levels; and finally, pilot-specific non-work-related factors would include things like the pilot’s age, health (lifestyle), family stress, work experience and sleep environment. All of these factors were identified during the literature analysis and have a significant bearing on how fatigue could present in short-haul pilots/co-pilots. Other important fatigue-related factors revealed during the expert interviews included, organizational culture, time management, health implications of fatigue, and management of fatigue. Conclusions: Pilot fatigue is a complex and multi-factorial physiological condition. There are many interacting components which contribute to pilot fatigue in short-haul operations. These should be viewed from an integrated perspective and holistic, systems-based approaches should be taken to manage these issues, particularly in the context of short-haul operations. This would optimize pilot performance and well-being and, most importantly, improve the safety of the work environment to enhance overall operation safety. Limitations: The study does not quantify the contributions made to pilot fatigue by the various factors explored. Therefore, care needs to be taken when designing and implementing interventions based on this research.
- Full Text:
- Date Issued: 2020
Tax revolts: an international perspective
- Authors: Tinotenda, Tariro Chizanga
- Date: 2020
- Subjects: Taxation -- Public opinion , Taxation -- Law and legislation -- South Africa , Income tax -- South Africa , South Africa -- Economic conditions , Fiscal policy -- South Africa
- Language: English
- Type: text , Thesis , Masters , MComm
- Identifier: http://hdl.handle.net/10962/166116 , vital:41330
- Description: The main goal of this study is to investigate whether tax revolts currently taking place and apparently threatening to take place in South Africa follow patterns shown in past international tax revolts or follow a unique pattern of their own. Tax revolts or tax rebellions are not a new phenomenon; they can be traced back to the beginning of time. Renowned tax revolts of the past include the Magna Carta and the Peasants’ Revolt in England, the Boston Tea Party, the Whiskey Rebellion, the Zimbabwean poll tax revolt, the Bambatha rebellion, the Tigre Rebellion, Proposition 13 and Margaret Thatcher’s poll tax revolt. These tax revolts were usually caused by the high burden of taxation, excessive government expenditure, corruption of government officials, declining tax morale of taxpayers and taxpayers’ perceptions of unfairness. In South Africa, elements of tax revolts have been on the rise. There has been a tax revolt against the e-tolling system in Gauteng since 2013. Non-payment of municipal rates is another form of tax revolt that has been and is happening in South Africa. Trade unions have also threatened strikes and mass action against various tax changes, including the value-added tax increase. Taxpayers, through media reporting, have been witnessing an increase in the use of taxpayers’ money for non-governmental agendas or overstated budgets. An increasing number of South Africans have been emigrating financially from South Africa to avoid a high taxation burden. The study falls within a post-positivist paradigm and an interpretive methodology is applied in the present research. The methodology is based on the fact that the social reality of tax revolts is not singular or objective, instead it is influenced by human experiences and social contexts. The study finds that tax revolts are currently occurring and threatening to occur in South Africa. The patterns of South African tax revolts are to a great extent similar to the patterns of international tax revolts, indicating the universalism of tax revolts. The study also confirms that South African tax revolts are, to a certain extent, unique.
- Full Text:
- Date Issued: 2020