Integrating blockchain and microgrid technology to enable peer-to-peer energy trading: a business process model
- Authors: Higgs, James
- Date: 2022-04-06
- Subjects: Blockchains (Databases) , Peer-to-peer architecture (Computer networks) , Electric power-plants Decentralization South Africa , Microgrids (Smart power grids) South Africa , Energy trading , Business process model
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/284559 , vital:56074
- Description: Traditional centralised energy systems are coming under increasing pressure because of decarbonisation, decentralisation, and digitisation. A lack of energy security and the inability to manage bi-directional electricity flows constitute two of the biggest challenges faced by centralised systems. Furthermore, in South Africa, the country’s energy system remains monopolised with one large utility satisfying most of the country’s electricity demand. This study is motivated by the need to address energy security within such a monopolised market. To redress the problems highlighted above, this study explores how blockchain and microgrid technology can be integrated to enable decentralised energy production and trading in South Africa. As such, this study develops a fully integrated blockchain-based microgrid energy trading system model. The functional requirements of the system are presented in the form of a business process model. Amongst other benefits, an active blockchain-based microgrid energy trading system provides a means to bolster energy security for the systems’ users. A unique aspect of this study’s approach to energy trading is the utilisation of blockchain’s native tokenizing capabilities. Prosumer energy tokens are minted to create a digital currency for local peer-to-peer energy exchange. A commons-rule based approach is adopted for governing energy resources. As such, this study demonstrates that commons-based solutions provide a feasible alternative to market and profit driven trading for organizing local energy exchange. The primary deliverable of this study satisfies the request of various blockchain researchers for blockchain research to focus on holistic conceptualisations, rather than on the minutiae of blockchain technicalities. Eight core functional requirements of a blockchain energy trading system were identified prior to the construction of the process model. The functional requirements were elicited during a scoping review as a part of the secondary data collection process. Expert review was utilised to verify the functional requirements of the blockchain energy trading system. Once the experts were identified, each expert completed a questionnaire with the intention to verify the requirements. The above process constituted the expert review process for the study. Additionally, the syntactic correctness of the business process model was verified by a business process modelling expert. Weber’s Theory of Evaluation constitutes the theoretical underpinning for the evaluation of the system parts. This study contributes the first publicly accessible business process models of a blockchain-based microgrid energy trading system. This study seeks to advance the discussion of a more integrative and cross disciplinary approach concerning blockchain research, particularly as it pertains to microgrid energy trading. , Thesis (MCom) -- Faculty of Commerce, Department of Information Systems, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Higgs, James
- Date: 2022-04-06
- Subjects: Blockchains (Databases) , Peer-to-peer architecture (Computer networks) , Electric power-plants Decentralization South Africa , Microgrids (Smart power grids) South Africa , Energy trading , Business process model
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/284559 , vital:56074
- Description: Traditional centralised energy systems are coming under increasing pressure because of decarbonisation, decentralisation, and digitisation. A lack of energy security and the inability to manage bi-directional electricity flows constitute two of the biggest challenges faced by centralised systems. Furthermore, in South Africa, the country’s energy system remains monopolised with one large utility satisfying most of the country’s electricity demand. This study is motivated by the need to address energy security within such a monopolised market. To redress the problems highlighted above, this study explores how blockchain and microgrid technology can be integrated to enable decentralised energy production and trading in South Africa. As such, this study develops a fully integrated blockchain-based microgrid energy trading system model. The functional requirements of the system are presented in the form of a business process model. Amongst other benefits, an active blockchain-based microgrid energy trading system provides a means to bolster energy security for the systems’ users. A unique aspect of this study’s approach to energy trading is the utilisation of blockchain’s native tokenizing capabilities. Prosumer energy tokens are minted to create a digital currency for local peer-to-peer energy exchange. A commons-rule based approach is adopted for governing energy resources. As such, this study demonstrates that commons-based solutions provide a feasible alternative to market and profit driven trading for organizing local energy exchange. The primary deliverable of this study satisfies the request of various blockchain researchers for blockchain research to focus on holistic conceptualisations, rather than on the minutiae of blockchain technicalities. Eight core functional requirements of a blockchain energy trading system were identified prior to the construction of the process model. The functional requirements were elicited during a scoping review as a part of the secondary data collection process. Expert review was utilised to verify the functional requirements of the blockchain energy trading system. Once the experts were identified, each expert completed a questionnaire with the intention to verify the requirements. The above process constituted the expert review process for the study. Additionally, the syntactic correctness of the business process model was verified by a business process modelling expert. Weber’s Theory of Evaluation constitutes the theoretical underpinning for the evaluation of the system parts. This study contributes the first publicly accessible business process models of a blockchain-based microgrid energy trading system. This study seeks to advance the discussion of a more integrative and cross disciplinary approach concerning blockchain research, particularly as it pertains to microgrid energy trading. , Thesis (MCom) -- Faculty of Commerce, Department of Information Systems, 2022
- Full Text:
- Date Issued: 2022-04-06
A decision-making model to guide securing blockchain deployments
- Authors: Cronje, Gerhard Roets
- Date: 2021-10-29
- Subjects: Blockchains (Databases) , Bitcoin , Cryptocurrencies , Distributed databases , Computer networks Security measures , Computer networks Security measures Decision making , Ethereum
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188865 , vital:44793
- Description: Satoshi Nakamoto, the pseudo-identity accredit with the paper that sparked the implementation of Bitcoin, is famously quoted as remarking, electronically of course, that “If you don’t believe it or don’t get it, I don’t have time to try and convince you, sorry” (Tsapis, 2019, p. 1). What is noticeable, 12 years after the famed Satoshi paper that initiated Bitcoin (Nakamoto, 2008), is that blockchain at the very least has staying power and potentially wide application. A lesser known figure Marc Kenisberg, founder of Bitcoin Chaser which is one of the many companies formed around the Bitcoin ecosystem, summarised it well saying “…Blockchain is the tech - Bitcoin is merely the first mainstream manifestation of its potential” (Tsapis, 2019, p. 1). With blockchain still trying to reach its potential and still maturing on its way towards a mainstream technology the main question that arises for security professionals is how do I ensure we do it securely? This research seeks to address that question by proposing a decision-making model that can be used by a security professional to guide them through ensuring appropriate security for blockchain deployments. This research is certainly not the first attempt at discussing the security of the blockchain and will not be the last, as the technology around blockchain and distributed ledger technology is still rapidly evolving. What this research does try to achieve is not to delve into extremely specific areas of blockchain security, or get bogged down in technical details, but to provide a reference framework that aims to cover all the major areas to be considered. The approach followed was to review the literature regarding blockchain and to identify the main security areas to be addressed. It then proposes a decision-making model and tests the model against a fictitious but relevant real-world example. It concludes with learnings from this research. The reader can be the judge, but the model aims to be a practical valuable resource to be used by any security professional, to navigate the security aspects logically and understandably when being involved in a blockchain deployment. In contrast to the Satoshi quote, this research tries to convince the reader and assist him/her in understanding the security choices related to every blockchain deployment. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Cronje, Gerhard Roets
- Date: 2021-10-29
- Subjects: Blockchains (Databases) , Bitcoin , Cryptocurrencies , Distributed databases , Computer networks Security measures , Computer networks Security measures Decision making , Ethereum
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188865 , vital:44793
- Description: Satoshi Nakamoto, the pseudo-identity accredit with the paper that sparked the implementation of Bitcoin, is famously quoted as remarking, electronically of course, that “If you don’t believe it or don’t get it, I don’t have time to try and convince you, sorry” (Tsapis, 2019, p. 1). What is noticeable, 12 years after the famed Satoshi paper that initiated Bitcoin (Nakamoto, 2008), is that blockchain at the very least has staying power and potentially wide application. A lesser known figure Marc Kenisberg, founder of Bitcoin Chaser which is one of the many companies formed around the Bitcoin ecosystem, summarised it well saying “…Blockchain is the tech - Bitcoin is merely the first mainstream manifestation of its potential” (Tsapis, 2019, p. 1). With blockchain still trying to reach its potential and still maturing on its way towards a mainstream technology the main question that arises for security professionals is how do I ensure we do it securely? This research seeks to address that question by proposing a decision-making model that can be used by a security professional to guide them through ensuring appropriate security for blockchain deployments. This research is certainly not the first attempt at discussing the security of the blockchain and will not be the last, as the technology around blockchain and distributed ledger technology is still rapidly evolving. What this research does try to achieve is not to delve into extremely specific areas of blockchain security, or get bogged down in technical details, but to provide a reference framework that aims to cover all the major areas to be considered. The approach followed was to review the literature regarding blockchain and to identify the main security areas to be addressed. It then proposes a decision-making model and tests the model against a fictitious but relevant real-world example. It concludes with learnings from this research. The reader can be the judge, but the model aims to be a practical valuable resource to be used by any security professional, to navigate the security aspects logically and understandably when being involved in a blockchain deployment. In contrast to the Satoshi quote, this research tries to convince the reader and assist him/her in understanding the security choices related to every blockchain deployment. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
- Date Issued: 2021-10-29
Peer-to-peer energy trading system using IoT and a low-computation blockchain network
- Authors: Ncube, Tyron
- Date: 2021-10-29
- Subjects: Blockchains (Databases) , Internet of things , Renewable energy sources , Smart power grids , Peer-to-peer architecture (Computer networks) , Energy trading system
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192119 , vital:45197
- Description: The use of renewable energy is increasing every year as it is seen as a viable and sustain- able long-term alternative to fossil-based sources of power. Emerging technologies are being merged with existing renewable energy systems to address some of the challenges associated with renewable energy, such as reliability and limited storage facilities for the generated energy. The Internet of Things (IoT) has made it possible for consumers to make money by selling off excess energy back to the utility company through smart grids that allow bi-directional communication between the consumer and the utility company. The major drawback of this is that the utility company still plays a central role in this setup as they are the only buyer of this excess energy generated from renewable energy sources. This research intends to use blockchain technology by leveraging its decentralized architecture to enable other individuals to be able to purchase this excess energy. Blockchain technology is first explained in detail, and its main features, such as consensus mechanisms, are examined. This evaluation of blockchain technology gives rise to some design questions that are taken into consideration to create a low-energy, low-computation Ethereum-based blockchain network that is the foundation for a peer-to-peer energy trading system. The peer-to-peer energy trading system makes use of smart meters to collect data about energy usage and gives users a web-based interface where they can transact with each other. A smart contract is also designed to facilitate payments for transactions. Lastly, the system is tested by carrying out transactions and transferring energy from one node in the system to another. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Ncube, Tyron
- Date: 2021-10-29
- Subjects: Blockchains (Databases) , Internet of things , Renewable energy sources , Smart power grids , Peer-to-peer architecture (Computer networks) , Energy trading system
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192119 , vital:45197
- Description: The use of renewable energy is increasing every year as it is seen as a viable and sustain- able long-term alternative to fossil-based sources of power. Emerging technologies are being merged with existing renewable energy systems to address some of the challenges associated with renewable energy, such as reliability and limited storage facilities for the generated energy. The Internet of Things (IoT) has made it possible for consumers to make money by selling off excess energy back to the utility company through smart grids that allow bi-directional communication between the consumer and the utility company. The major drawback of this is that the utility company still plays a central role in this setup as they are the only buyer of this excess energy generated from renewable energy sources. This research intends to use blockchain technology by leveraging its decentralized architecture to enable other individuals to be able to purchase this excess energy. Blockchain technology is first explained in detail, and its main features, such as consensus mechanisms, are examined. This evaluation of blockchain technology gives rise to some design questions that are taken into consideration to create a low-energy, low-computation Ethereum-based blockchain network that is the foundation for a peer-to-peer energy trading system. The peer-to-peer energy trading system makes use of smart meters to collect data about energy usage and gives users a web-based interface where they can transact with each other. A smart contract is also designed to facilitate payments for transactions. Lastly, the system is tested by carrying out transactions and transferring energy from one node in the system to another. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
- Date Issued: 2021-10-29
A business process model for blockchain-based South African real estate transactions
- Authors: Tilbury, Jack Laurie
- Date: 2020
- Subjects: Blockchains (Databases) , Conveyancing -- Technological innovations , Real estate business -- Data processing , Real estate business -- South Africa -- Technological innovations
- Language: English
- Type: text , Thesis , Masters , MCom
- Identifier: http://hdl.handle.net/10962/148380 , vital:38734
- Description: The real estate transaction process has been described as inefficient and technologically outdated due to numerous stakeholders and predominantly paper-based operations. Despite the apparent bottlenecks in the current process, the implementation of new technology into the real estate sector has lagged. Several attempts have been made to modernise and digitise the business process but committed integration of assisting technology has lacked attention. This study examined the applicability and potential integration of blockchain technology into the business process of South African real estate transactions. Blockchain’s novelty means that research in this space, especially within South Africa, is limited. Of the research that has been conducted, no models of the business processes for South African or blockchain-based real estate transactions have been constructed. This study provides two business process models, illustrating the two different processes. The main contribution of this paper was an integrated business process model, illustrating how the various processes and stakeholder interactions for South African blockchain-based real estate transactions are conducted on one transaction platform, common to all participating stakeholders. This platform was named the South African Blockchain Land Exchange System (SABLES), which manages and facilitates these transactions in their entirety from start to finish. This model depicts an enhanced business process that provides increased security, transparency, and speed. These benefits will be realised by those who register, adopt, and transact on the platform. Through in-depth interviews, the integrated business process model was assessed. The findings produced a final and combined thematic map, representing the main themes of the analysed interview data, namely blockchain implementation strategies, business process applicability, information technology assimilation, current transaction context, and PropTech 3.0 success factors. The discussion revealed that the current transaction process lacks technological innovation, which increases pressure on the conveyancing role. It was also revealed that there is not only a need within the industry, but a desire, for newer technologies to assist the transaction process. In order to streamline and improve efficiency, business processes should leverage digital records and data, and strive for a solution beyond digitisation, achieving digitalisation. Digitalisation recognises digital documents as official and legal documents as opposed to simply being digital back-ups. This, coupled with the business process models, represent theoretical contributions.
- Full Text:
- Date Issued: 2020
- Authors: Tilbury, Jack Laurie
- Date: 2020
- Subjects: Blockchains (Databases) , Conveyancing -- Technological innovations , Real estate business -- Data processing , Real estate business -- South Africa -- Technological innovations
- Language: English
- Type: text , Thesis , Masters , MCom
- Identifier: http://hdl.handle.net/10962/148380 , vital:38734
- Description: The real estate transaction process has been described as inefficient and technologically outdated due to numerous stakeholders and predominantly paper-based operations. Despite the apparent bottlenecks in the current process, the implementation of new technology into the real estate sector has lagged. Several attempts have been made to modernise and digitise the business process but committed integration of assisting technology has lacked attention. This study examined the applicability and potential integration of blockchain technology into the business process of South African real estate transactions. Blockchain’s novelty means that research in this space, especially within South Africa, is limited. Of the research that has been conducted, no models of the business processes for South African or blockchain-based real estate transactions have been constructed. This study provides two business process models, illustrating the two different processes. The main contribution of this paper was an integrated business process model, illustrating how the various processes and stakeholder interactions for South African blockchain-based real estate transactions are conducted on one transaction platform, common to all participating stakeholders. This platform was named the South African Blockchain Land Exchange System (SABLES), which manages and facilitates these transactions in their entirety from start to finish. This model depicts an enhanced business process that provides increased security, transparency, and speed. These benefits will be realised by those who register, adopt, and transact on the platform. Through in-depth interviews, the integrated business process model was assessed. The findings produced a final and combined thematic map, representing the main themes of the analysed interview data, namely blockchain implementation strategies, business process applicability, information technology assimilation, current transaction context, and PropTech 3.0 success factors. The discussion revealed that the current transaction process lacks technological innovation, which increases pressure on the conveyancing role. It was also revealed that there is not only a need within the industry, but a desire, for newer technologies to assist the transaction process. In order to streamline and improve efficiency, business processes should leverage digital records and data, and strive for a solution beyond digitisation, achieving digitalisation. Digitalisation recognises digital documents as official and legal documents as opposed to simply being digital back-ups. This, coupled with the business process models, represent theoretical contributions.
- Full Text:
- Date Issued: 2020
Applying blockchain technology to aspects of electronic health records in South Africa: lessons learnt
- Authors: Adlam, Ryno
- Date: 2020
- Subjects: Blockchains (Databases) , Database security Data protection Medical records -- Data processing
- Language: English
- Type: Thesis , Masters , MIT
- Identifier: http://hdl.handle.net/10948/45996 , vital:39405
- Description: The purpose of this study was to explore the applicability of blockchain technology as a viable alternative for the secure storage and distribution of electronic health records in a South African context. The adoption of electronic health records (EHRs) has grown over recent years. Electronic health records (EHRs) can be seen as electronic versions of patients’ medical history. EHRs promise benefits such as improving the quality of care, reducing medical errors, reducing costs, saving time, and enhancing the availability and sharing of medical records. Blockchain, in simple terms, could be seen as a distributed database controlled by a group of individuals. Blockchain technology differs from other distributed ledger technology by bundling unrelated data into blocks that are chained together in a linked-list manner, hence the name blockchain. Blockchain technology strives to provide desirable features, such as decentralization, immutability, audibility, and transparency. EHRs are traditionally constructed with a cloud-based infrastructure to promote the storing and distribution of medical records. These medical records are commonly stored in a centralized architecture, such as a relational database. The centralized architecture employed by EHRs may present a single point of failure. These kinds of failures may lead to data-breaches. The cloud-based infrastructure is effective and efficient from an availability standpoint. The increased availability of electronic health records has brought forth challenges related to the security and privacy of the patient’s medical records. The sensitive nature of EHRs attracts the attention of cyber-criminals. There has been a rise in the number of data breaches related to electronic health records. The traditional infrastructure used by electronic health records can no longer ensure the privacy and security of patient’s medical records. To determine whether blockchain is a viable alternative to these approaches, the main objective of this study was to compile a technical report on the applicability of aspects of blockchain technology to the secure storage and distribution of electronic health records. The study first conducted a literature review to gather background on the current state of electronic health records and blockchain technology. The results of the literature review were used to compile an initial report. Experiments were conducted with various aspects of blockchain technology to build a technical baseline and to ultimately validate the initial report. The insights gained from the experiments served to refine the initial report into a final technical report. The final deliverable of this study was to devise a technical report. The technical report serves as a generalized overview of the applicability of blockchain technology as a secure storage and distribution mechanism for electronic health records. The main topics covered by the technical report to outline the applicability of blockchain technology to EHRs are as follows: authentication, authorization, audit log, storage and transactions. The insights gained from the study illustrate that permissioned blockchain technology can enhance the traditional AAA security scheme employed by traditional EHRs. The AAA security scheme entails the use of certificate-based authentication and attributebased access control for authorization. Audit logs can be stored in a semi-decentralized architecture that can enhance the security and privacy of audit logs. Using blockchain technology for storing electronic health records might not be a viable alternative to traditional EHRs architecture. Blockchain technology violates certain privacy regulations as information is stored in a permanent manner. Furthermore, blockchain technology is not optimized for dealing with large volumes of data. However, blockchain technology could be used to store a cryptographic hash of electronic health records to ensure the integrity of records. Permissioned blockchain technology can enhance the EHRs transaction process by transacting health records in a peer-to-peer infrastructure. In doing so, the above-mentioned AAA security scheme can enhance the security, confidentiality, and integrity of electronic health records shared across organizational bounds.
- Full Text:
- Date Issued: 2020
- Authors: Adlam, Ryno
- Date: 2020
- Subjects: Blockchains (Databases) , Database security Data protection Medical records -- Data processing
- Language: English
- Type: Thesis , Masters , MIT
- Identifier: http://hdl.handle.net/10948/45996 , vital:39405
- Description: The purpose of this study was to explore the applicability of blockchain technology as a viable alternative for the secure storage and distribution of electronic health records in a South African context. The adoption of electronic health records (EHRs) has grown over recent years. Electronic health records (EHRs) can be seen as electronic versions of patients’ medical history. EHRs promise benefits such as improving the quality of care, reducing medical errors, reducing costs, saving time, and enhancing the availability and sharing of medical records. Blockchain, in simple terms, could be seen as a distributed database controlled by a group of individuals. Blockchain technology differs from other distributed ledger technology by bundling unrelated data into blocks that are chained together in a linked-list manner, hence the name blockchain. Blockchain technology strives to provide desirable features, such as decentralization, immutability, audibility, and transparency. EHRs are traditionally constructed with a cloud-based infrastructure to promote the storing and distribution of medical records. These medical records are commonly stored in a centralized architecture, such as a relational database. The centralized architecture employed by EHRs may present a single point of failure. These kinds of failures may lead to data-breaches. The cloud-based infrastructure is effective and efficient from an availability standpoint. The increased availability of electronic health records has brought forth challenges related to the security and privacy of the patient’s medical records. The sensitive nature of EHRs attracts the attention of cyber-criminals. There has been a rise in the number of data breaches related to electronic health records. The traditional infrastructure used by electronic health records can no longer ensure the privacy and security of patient’s medical records. To determine whether blockchain is a viable alternative to these approaches, the main objective of this study was to compile a technical report on the applicability of aspects of blockchain technology to the secure storage and distribution of electronic health records. The study first conducted a literature review to gather background on the current state of electronic health records and blockchain technology. The results of the literature review were used to compile an initial report. Experiments were conducted with various aspects of blockchain technology to build a technical baseline and to ultimately validate the initial report. The insights gained from the experiments served to refine the initial report into a final technical report. The final deliverable of this study was to devise a technical report. The technical report serves as a generalized overview of the applicability of blockchain technology as a secure storage and distribution mechanism for electronic health records. The main topics covered by the technical report to outline the applicability of blockchain technology to EHRs are as follows: authentication, authorization, audit log, storage and transactions. The insights gained from the study illustrate that permissioned blockchain technology can enhance the traditional AAA security scheme employed by traditional EHRs. The AAA security scheme entails the use of certificate-based authentication and attributebased access control for authorization. Audit logs can be stored in a semi-decentralized architecture that can enhance the security and privacy of audit logs. Using blockchain technology for storing electronic health records might not be a viable alternative to traditional EHRs architecture. Blockchain technology violates certain privacy regulations as information is stored in a permanent manner. Furthermore, blockchain technology is not optimized for dealing with large volumes of data. However, blockchain technology could be used to store a cryptographic hash of electronic health records to ensure the integrity of records. Permissioned blockchain technology can enhance the EHRs transaction process by transacting health records in a peer-to-peer infrastructure. In doing so, the above-mentioned AAA security scheme can enhance the security, confidentiality, and integrity of electronic health records shared across organizational bounds.
- Full Text:
- Date Issued: 2020
Practical application of distributed ledger technology in support of digital evidence integrity verification processes
- Authors: Weilbach, William Thomas
- Date: 2018
- Subjects: Digital forensic science , Blockchains (Databases) , Bitcoin , Distributed databases , Computer systems Verification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/61872 , vital:28070
- Description: After its birth in cryptocurrencies, distributed ledger (blockchain) technology rapidly grew in popularity in other technology domains. Alternative applications of this technology range from digitizing the bank guarantees process for commercial property leases (Anz and IBM, 2017) to tracking the provenance of high-value physical goods (Everledger Ltd., 2017). As a whole, distributed ledger technology has acted as a catalyst to the rise of many innovative alternative solutions to existing problems, mostly associated with trust and integrity. In this research, a niche application of this technology is proposed for use in digital forensics by providing a mechanism for the transparent and irrefutable verification of digital evidence, ensuring its integrity as established blockchains serve as an ideal mechanism to store and validate arbitrary data against. Evaluation and identification of candidate technologies in this domain is based on a set of requirements derived from previous work in this field (Weilbach, 2014). OpenTimestamps (Todd, 2016b) is chosen as the foundation of further work for its robust architecture, transparent nature and multi-platform support. A robust evaluation and discussion of OpenTimestamps is performed to reinforce why it can be trusted as an implementation and protocol. An implementation of OpenTimestamps is designed for the popular open source forensic tool, Autopsy, and an Autopsy module is subsequently developed and released to the public. OpenTimestamps is tested at scale and found to have insignificant error rates for the verification of timestamps. Through practical implementation and extensive testing, it is shown that OpenTimestamps has the potential to significantly advance the practice of digital evidence integrity verification. A conclusion is reached by discussing some of the limitations of OpenTimestamps in terms of accuracy and error rates. It is shown that although OpenTimestamps has very specific timing claims in the attestation, with a near zero error rate, the actual attestation is truly accurate to within a day. This is followed by proposing potential avenues for future work.
- Full Text:
- Date Issued: 2018
- Authors: Weilbach, William Thomas
- Date: 2018
- Subjects: Digital forensic science , Blockchains (Databases) , Bitcoin , Distributed databases , Computer systems Verification
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/61872 , vital:28070
- Description: After its birth in cryptocurrencies, distributed ledger (blockchain) technology rapidly grew in popularity in other technology domains. Alternative applications of this technology range from digitizing the bank guarantees process for commercial property leases (Anz and IBM, 2017) to tracking the provenance of high-value physical goods (Everledger Ltd., 2017). As a whole, distributed ledger technology has acted as a catalyst to the rise of many innovative alternative solutions to existing problems, mostly associated with trust and integrity. In this research, a niche application of this technology is proposed for use in digital forensics by providing a mechanism for the transparent and irrefutable verification of digital evidence, ensuring its integrity as established blockchains serve as an ideal mechanism to store and validate arbitrary data against. Evaluation and identification of candidate technologies in this domain is based on a set of requirements derived from previous work in this field (Weilbach, 2014). OpenTimestamps (Todd, 2016b) is chosen as the foundation of further work for its robust architecture, transparent nature and multi-platform support. A robust evaluation and discussion of OpenTimestamps is performed to reinforce why it can be trusted as an implementation and protocol. An implementation of OpenTimestamps is designed for the popular open source forensic tool, Autopsy, and an Autopsy module is subsequently developed and released to the public. OpenTimestamps is tested at scale and found to have insignificant error rates for the verification of timestamps. Through practical implementation and extensive testing, it is shown that OpenTimestamps has the potential to significantly advance the practice of digital evidence integrity verification. A conclusion is reached by discussing some of the limitations of OpenTimestamps in terms of accuracy and error rates. It is shown that although OpenTimestamps has very specific timing claims in the attestation, with a near zero error rate, the actual attestation is truly accurate to within a day. This is followed by proposing potential avenues for future work.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »