Assessing the potential role of microorganisms in the production of seedlings for the restoration of Albany Thicket
- Authors: Mpama, Nelisa
- Date: 2017
- Subjects: Vesicular-arbuscular mycorrhizas , Rhizobacteria , Restoration ecology South Africa Albany , Microorganisms
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/64555 , vital:28558
- Description: The role of microorganisms in restoration of the Albany Thicket has not been well documented, although the benefits to plants of these various interactions has been well documented. Microorganisms are chief ecological engineers and assist in resolving environmental problems and act to restore degraded ecosystem function by forming mutual relationships with the roots of the plants. The aim of this study was to assess the potential of microorganisms for the improved biomass production of selected woody and succulent seedlings used in mesic thicket restoration. Three tree species were selected for propagation in this study namely; Mystroxylon aethiopicum Scutia myrtina and Aloe ferox. Soil samples were collected from a degraded and intact thicket site from Bathurst, South Africa. Soils were evaluated for number of arbuscular mycorrhizal (AM) spores, mycorrhizal infectivity potential and nutrient availability both before and after seedling propagation. Pasteurized soil from the degraded site was used in a pot trial. Ten replicates seedling for plant species were planted and subjected to four treatments which included inoculation with AM fungi and the rhizobacterium, Enterobacter sp., alone and in combination; the fourth treatment was an un-inouclated control. Plant growth parameters were recorded at regular intervals where appropriate and seedlings were harvested after 24 weeks for biomass measurements and AM colonisation assessments. Although generally low (< 1 spore per gram) the density of AM fungal spores was significantly higher in soils from the intact site when compared with soils from the degraded site. The mycorrhizal potential of the soils was however not significantly different. Mystroxylon aethiopicum seedling shoot height, canopy diameter and shoot biomass showed a significant increase when inoculated with AM fungi while S. myrtina seedlings showed increased shoot height when inoculated with both AM fungi and Enterobacter sp. Aloe ferox seedlings did not respond to microbial inoculation. The concentration of soil P and Na increased in treatments with Enterobacter sp. alone and in combination with AM fungi. Mystroxylon aethiopicum and S. myrtina seedlings showed a dependency on microbial inoculants indicating the importance of inoculation in the nursery before planting out into the field. Overall AM fungal inoculants applied to seedlings can be used to compensate for nutrient deficiency in soils. Although the Enterobacter isolate used was known to have various plant growth promoting capabilities. It is recommended that other rhizobacterial isolates be investigated. , Thesis (MSc) -- Faculty of Science, Environmental Science, 2017
- Full Text:
- Date Issued: 2017
Effects of genetically modified maize (MON810) and its residues on the functional diversity of microorganisms in two South African soils
- Authors: Puta, Usanda
- Date: 2011
- Subjects: Genetically modified foods -- South Africa , Transgenic plants -- South Africa , Crops -- Genetic engineering -- South Africa , Soil microbiology -- South Africa , Microorganisms , Microbial ecology , Rhizosphere -- Microbiology , Vesicular-arbuscular mycorrhizas , Corn -- South Africa
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11250 , http://hdl.handle.net/10353/419 , Genetically modified foods -- South Africa , Transgenic plants -- South Africa , Crops -- Genetic engineering -- South Africa , Soil microbiology -- South Africa , Microorganisms , Microbial ecology , Rhizosphere -- Microbiology , Vesicular-arbuscular mycorrhizas , Corn -- South Africa
- Description: Genetically modified (GM) crops are commercially cultivated worldwide but there are concerns on their possible negative impacts on soil biodiversity. A glasshouse study was conducted to determine effects of Bt maize residues on soil microbial diversity. Residues of Bt maize (PAN 6Q-308B) and non-Bt maize (PAN 6Q-121) were incorporated into the soil and corresponding maize seeds planted. The treatments were replicated three times. Fertilizer and water application were similar for both treatments. Rhizosphere and bulk soil was destructively sampled from each treatment and analyzed for microbial community level physiological profiles using Biolog plates with 31 different carbon substrates. Absorbance in the Biolog plates was recorded after 72 h of incubation at 20oC. Arbuscular mycorrhizal fungi spore counts were also determined. Field studies were conducted at the University of Free State and University of Fort Hare Research Farms to determine the effects of growing Bt maize on soil microbial diversity. One Bt maize cultivar (PAN6Q-308B) and non-Bt maize (PAN6Q-121) were grown in a paired experiment at University of Free State farm, while two Bt maize (DKC61-25B and PAN6Q-321B) and their near-isogenic non-Bt maize lines (DKC61-24 and PAN6777) were grown in a randomized complete block design with three replicates. Fertilization, weed control and water application, were similar for both Bt maize cultivars and their non-Bt maize counterparts. Rhizosphere soil samples were collected by uprooting whole plants and collecting the soil attached to the roots. The samples were analysed for microbial diversity and for arbuscular mycorrhizae fungal spore counts. Principal component analysis showed that soil microbial diversity was affected more by sampling time whereas genetic modification had minimal effects. Presence of residues also increased the diversity of microorganisms. Mycorrhizal fungal spores were not affected by the presence of Bt maize residues. Growing Bt maize had no effect on the soil microbial diversity in the rhizosphere.
- Full Text:
- Date Issued: 2011