Design, formulation and evalauation of liposomes co-loaded with human serum Albumin and Rifampicin
- Authors: Bapolisi, Alain Murhimalika
- Date: 2020
- Subjects: Liposomes , Serum albumin , Rifampin , Mycobacterium tuberculosis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/161780 , vital:40670
- Description: Tuberculosis (TB) is a devastating infectious disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious agent. The high morbidity and mortality rates of TB are partly due to factors such as the lengthy regimen (of 6–24 months), the development of drug resistance, and the pathogen location within the macrophages. These, with poor physiochemical properties of existing drugs hamper the effectiveness of the treatment despite the existence of potent antibiotics such as Rifampicin (Rif). Hydrophobicity plagues many drugs, including Rif, which are then particularly affected due to inherently poor intracellular availability. Novel drug delivery approaches are therefore needed in order to optimize the cytotoxic potential of said antitubercular drugs. To improve the bioavailability of hydrophobic drugs, numerous delivery strategies have been developed. Amongst these, the coordination of cytotoxic drugs to therapeutic proteins have shown some success for improved efficacy in the management of illnesses including infectious diseases. Of therapeutic proteins, Human Serum Albumin (HSA) is an attractive drug carrier with interestingbenefits such as low immunogenicity, antioxidant properties and improving cellular uptake ofdrugs through HSA-specific binding sites which are expressed on most cells including macrophages, where M. tuberculosis often resides. Hence, combination of Rif to HSA (Rif-HSA)seems a promising approach for improved intracellular delivery of Rif. However, the in vivo stability of colloidal protein-based therapeutics is mostly challenging and an effective vehicle is needed to control the biological fate of such conjugates.Liposomes seem to be appropriate carriers for the Rif-HSA complex due to their reputable applicability for encapsulating diverse materials (i.e., hydrophobic and hydrophilic compounds or small and complex molecules) and preventing chemical and biological degradation of the cargo. Therefore, the main objective of this study was to simultaneously encapsulate Rif and HSA in liposomes, which, to the best of our knowledge, has not been done before. The dual liposomes (Rif-HSA-lip) were made by a modified “Reverse Phase Evaporation” method (REV), following a Design of Experiments (DOE) approach to determine which factors impact the formulation. In addition, liposomes were made from crude soybean lecithin (CSL), rather than expensive and highly purified lipids. The liposomes were fully characterised, and the encapsulation efficiency (î) was monitored using high-performance liquid chromatography (HPLC). The results were correlated with factors such as organic and aqueous phase composition, as well as the in vitro release profile of Rif. Transmission electron microscopy (TEM) results confirmed the formation of spherical dual liposomes nanoparticles of roughly 200 nm. Dynamic light scattering (DLS) and Zeta potential measurements showed a negative charge (<–45 mV) and with satisfactory polydispersity (PDI<0.5). HSA dramatically improved the aqueous solubility of Rif (from1.9 mg/ml in water to around 4.3 mg/ml in HSA 10% solution) mainly due to Rif-HSA hydrophobic interactions. This resulted in a good î of almost 60% for Rif, despite the presence of bulky HSA in the lipid bilayer. These details were confirmed using proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR). Furthermore, energy dispersive X-ray (EDX) and DLS data suggested the presence of HSA poking out on the surface of liposomes, which is encouraging for potential targeted delivery in the future. The in vitro release studies also depicted a substantial improvement in the diffusion of Rif in dual liposomes versus free Rif, from 65% after 12 hours for free Rif to 95% after only 5 hours for Rif- HSA-lip. Finally, stability studies conducted over 30 days at room temperature, showed that the freeze-dried formulations of Rif-HSA-lip exhibited good shelf stability over liposomes with no HSA. This study represents an illustrative example of co-loading of antibiotics and proteins into liposomes, which could encourage further development of novel nanoparticulate tools for the effective management of both drug-susceptible and -resistant infectious diseases such as TB.
- Full Text:
- Date Issued: 2020
- Authors: Bapolisi, Alain Murhimalika
- Date: 2020
- Subjects: Liposomes , Serum albumin , Rifampin , Mycobacterium tuberculosis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/161780 , vital:40670
- Description: Tuberculosis (TB) is a devastating infectious disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious agent. The high morbidity and mortality rates of TB are partly due to factors such as the lengthy regimen (of 6–24 months), the development of drug resistance, and the pathogen location within the macrophages. These, with poor physiochemical properties of existing drugs hamper the effectiveness of the treatment despite the existence of potent antibiotics such as Rifampicin (Rif). Hydrophobicity plagues many drugs, including Rif, which are then particularly affected due to inherently poor intracellular availability. Novel drug delivery approaches are therefore needed in order to optimize the cytotoxic potential of said antitubercular drugs. To improve the bioavailability of hydrophobic drugs, numerous delivery strategies have been developed. Amongst these, the coordination of cytotoxic drugs to therapeutic proteins have shown some success for improved efficacy in the management of illnesses including infectious diseases. Of therapeutic proteins, Human Serum Albumin (HSA) is an attractive drug carrier with interestingbenefits such as low immunogenicity, antioxidant properties and improving cellular uptake ofdrugs through HSA-specific binding sites which are expressed on most cells including macrophages, where M. tuberculosis often resides. Hence, combination of Rif to HSA (Rif-HSA)seems a promising approach for improved intracellular delivery of Rif. However, the in vivo stability of colloidal protein-based therapeutics is mostly challenging and an effective vehicle is needed to control the biological fate of such conjugates.Liposomes seem to be appropriate carriers for the Rif-HSA complex due to their reputable applicability for encapsulating diverse materials (i.e., hydrophobic and hydrophilic compounds or small and complex molecules) and preventing chemical and biological degradation of the cargo. Therefore, the main objective of this study was to simultaneously encapsulate Rif and HSA in liposomes, which, to the best of our knowledge, has not been done before. The dual liposomes (Rif-HSA-lip) were made by a modified “Reverse Phase Evaporation” method (REV), following a Design of Experiments (DOE) approach to determine which factors impact the formulation. In addition, liposomes were made from crude soybean lecithin (CSL), rather than expensive and highly purified lipids. The liposomes were fully characterised, and the encapsulation efficiency (î) was monitored using high-performance liquid chromatography (HPLC). The results were correlated with factors such as organic and aqueous phase composition, as well as the in vitro release profile of Rif. Transmission electron microscopy (TEM) results confirmed the formation of spherical dual liposomes nanoparticles of roughly 200 nm. Dynamic light scattering (DLS) and Zeta potential measurements showed a negative charge (<–45 mV) and with satisfactory polydispersity (PDI<0.5). HSA dramatically improved the aqueous solubility of Rif (from1.9 mg/ml in water to around 4.3 mg/ml in HSA 10% solution) mainly due to Rif-HSA hydrophobic interactions. This resulted in a good î of almost 60% for Rif, despite the presence of bulky HSA in the lipid bilayer. These details were confirmed using proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR). Furthermore, energy dispersive X-ray (EDX) and DLS data suggested the presence of HSA poking out on the surface of liposomes, which is encouraging for potential targeted delivery in the future. The in vitro release studies also depicted a substantial improvement in the diffusion of Rif in dual liposomes versus free Rif, from 65% after 12 hours for free Rif to 95% after only 5 hours for Rif- HSA-lip. Finally, stability studies conducted over 30 days at room temperature, showed that the freeze-dried formulations of Rif-HSA-lip exhibited good shelf stability over liposomes with no HSA. This study represents an illustrative example of co-loading of antibiotics and proteins into liposomes, which could encourage further development of novel nanoparticulate tools for the effective management of both drug-susceptible and -resistant infectious diseases such as TB.
- Full Text:
- Date Issued: 2020
Design, formulation and evaluation of liposomes co-loaded with human serum albumin and rifampicin
- Authors: Bapolisi, Alain Murhimalika
- Date: 2020
- Subjects: Liposomes , Rifampin , Antitubercular agents , Serum albumin , Albumins , Tuberculosis -- Treatment
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/163179 , vital:41016
- Description: Tuberculosis (TB) is a devastating infectious disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious agent. The high morbidity and mortality rates of TB are partly due to factors such as the lengthy regimen (of 6–24 months), the development of drug resistance, and the pathogen location within the macrophages. These, with poor physiochemical properties of existing drugs hamper the effectiveness of the treatment despite the existence of potent antibiotics such as Rifampicin (Rif). Hydrophobicity plagues many drugs, including Rif, which are then particularly affected due to inherently poor intracellular availability. Novel drug delivery approaches are therefore needed in order to optimize the cytotoxic potential of said antitubercular drugs. To improve the bioavailability of hydrophobic drugs, numerous delivery strategies have been developed. Amongst these, the coordination of cytotoxic drugs to therapeutic proteins have shown some success for improved efficacy in the management of illnesses including infectious diseases. Of therapeutic proteins, Human Serum Albumin (HSA) is an attractive drug carrier with interesting benefits such as low immunogenicity, antioxidant properties and improving cellular uptake of drugs through HSA-specific binding sites which are expressed on most cells including macrophages, where M. tuberculosis often resides. Hence, combination of Rif to HSA (Rif-HSA) seems a promising approach for improved intracellular delivery of Rif. However, the in vivo stability of colloidal protein-based therapeutics is mostly challenging and an effective vehicle is needed to control the biological fate of such conjugates. Liposomes seem to be appropriate carriers for the Rif-HSA complex due to their reputable applicability for encapsulating diverse materials (i.e., hydrophobic and hydrophilic compounds or small and complex molecules) and preventing chemical and biological degradation of the cargo. Therefore, the main objective of this study was to simultaneously encapsulate Rif and HSA in liposomes, which, to the best of our knowledge, has not been done before. The dual liposomes (Rif-HSA-lip) were made by a modified “Reverse Phase Evaporation” method (REV), following a Design of Experiments (DOE) approach to determine which factors impact the formulation. In addition, liposomes were made from crude soybean lecithin (CSL), rather than expensive and highly purified lipids. iv The liposomes were fully characterised, and the encapsulation efficiency (î) was monitored using high-performance liquid chromatography (HPLC). The results were correlated with factors such as organic and aqueous phase composition, as well as the in vitro release profile of Rif. Transmission electron microscopy (TEM) results confirmed the formation of spherical dual liposomes nanoparticles of roughly 200 nm. Dynamic light scattering (DLS) and Zeta potential measurements showed a negative charge (<–45 mV) and with satisfactory polydispersity (PDI<0.5). HSA dramatically improved the aqueous solubility of Rif (from1.9 mg/ml in water to around 4.3 mg/ml in HSA 10% solution) mainly due to Rif-HSA hydrophobic interactions. This resulted in a good î of almost 60% for Rif, despite the presence of bulky HSA in the lipid bilayer. These details were confirmed using proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR). Furthermore, energy dispersive X-ray (EDX) and DLS data suggested the presence of HSA poking out on the surface of liposomes, which is encouraging for potential targeted delivery in the future. The in vitro release studies also depicted a substantial improvement in the diffusion of Rif in dual liposomes versus free Rif, from 65% after 12 hours for free Rif to 95% after only 5 hours for Rif- HSA-lip. Finally, stability studies conducted over 30 days at room temperature, showed that the freeze-dried formulations of Rif-HSA-lip exhibited good shelf stability over liposomes with no HSA. This study represents an illustrative example of co-loading of antibiotics and proteins into liposomes, which could encourage further development of novel nanoparticulate tools for the effective management of both drug-susceptible and -resistant infectious diseases such as TB.
- Full Text:
- Date Issued: 2020
- Authors: Bapolisi, Alain Murhimalika
- Date: 2020
- Subjects: Liposomes , Rifampin , Antitubercular agents , Serum albumin , Albumins , Tuberculosis -- Treatment
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/163179 , vital:41016
- Description: Tuberculosis (TB) is a devastating infectious disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious agent. The high morbidity and mortality rates of TB are partly due to factors such as the lengthy regimen (of 6–24 months), the development of drug resistance, and the pathogen location within the macrophages. These, with poor physiochemical properties of existing drugs hamper the effectiveness of the treatment despite the existence of potent antibiotics such as Rifampicin (Rif). Hydrophobicity plagues many drugs, including Rif, which are then particularly affected due to inherently poor intracellular availability. Novel drug delivery approaches are therefore needed in order to optimize the cytotoxic potential of said antitubercular drugs. To improve the bioavailability of hydrophobic drugs, numerous delivery strategies have been developed. Amongst these, the coordination of cytotoxic drugs to therapeutic proteins have shown some success for improved efficacy in the management of illnesses including infectious diseases. Of therapeutic proteins, Human Serum Albumin (HSA) is an attractive drug carrier with interesting benefits such as low immunogenicity, antioxidant properties and improving cellular uptake of drugs through HSA-specific binding sites which are expressed on most cells including macrophages, where M. tuberculosis often resides. Hence, combination of Rif to HSA (Rif-HSA) seems a promising approach for improved intracellular delivery of Rif. However, the in vivo stability of colloidal protein-based therapeutics is mostly challenging and an effective vehicle is needed to control the biological fate of such conjugates. Liposomes seem to be appropriate carriers for the Rif-HSA complex due to their reputable applicability for encapsulating diverse materials (i.e., hydrophobic and hydrophilic compounds or small and complex molecules) and preventing chemical and biological degradation of the cargo. Therefore, the main objective of this study was to simultaneously encapsulate Rif and HSA in liposomes, which, to the best of our knowledge, has not been done before. The dual liposomes (Rif-HSA-lip) were made by a modified “Reverse Phase Evaporation” method (REV), following a Design of Experiments (DOE) approach to determine which factors impact the formulation. In addition, liposomes were made from crude soybean lecithin (CSL), rather than expensive and highly purified lipids. iv The liposomes were fully characterised, and the encapsulation efficiency (î) was monitored using high-performance liquid chromatography (HPLC). The results were correlated with factors such as organic and aqueous phase composition, as well as the in vitro release profile of Rif. Transmission electron microscopy (TEM) results confirmed the formation of spherical dual liposomes nanoparticles of roughly 200 nm. Dynamic light scattering (DLS) and Zeta potential measurements showed a negative charge (<–45 mV) and with satisfactory polydispersity (PDI<0.5). HSA dramatically improved the aqueous solubility of Rif (from1.9 mg/ml in water to around 4.3 mg/ml in HSA 10% solution) mainly due to Rif-HSA hydrophobic interactions. This resulted in a good î of almost 60% for Rif, despite the presence of bulky HSA in the lipid bilayer. These details were confirmed using proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR). Furthermore, energy dispersive X-ray (EDX) and DLS data suggested the presence of HSA poking out on the surface of liposomes, which is encouraging for potential targeted delivery in the future. The in vitro release studies also depicted a substantial improvement in the diffusion of Rif in dual liposomes versus free Rif, from 65% after 12 hours for free Rif to 95% after only 5 hours for Rif- HSA-lip. Finally, stability studies conducted over 30 days at room temperature, showed that the freeze-dried formulations of Rif-HSA-lip exhibited good shelf stability over liposomes with no HSA. This study represents an illustrative example of co-loading of antibiotics and proteins into liposomes, which could encourage further development of novel nanoparticulate tools for the effective management of both drug-susceptible and -resistant infectious diseases such as TB.
- Full Text:
- Date Issued: 2020
Polymerized serum albumin beads for use as slow-release adjuvants
- Martin, Michelle Elizabeth Denny
- Authors: Martin, Michelle Elizabeth Denny
- Date: 1988
- Subjects: Serum albumin , Antigens , Vaccines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3879 , http://hdl.handle.net/10962/d1001613
- Description: Experimental vaccines have been made by covalently bonding virus particles into polymerized rabbit serum albumin beads. Using Nodamura virus as a model antigen, these model vaccines induced specific humoral antibody production, comparable with that achieved using Freund's adjuvants. Virus specific antibodies were also induced when Nodamura virus was covalently attached to the bead surface using different crosslinkers. However, when poliovirus type 2 (Sabin strain) was polymerized into beads, the levels of neutralizing antibodies were insignificant compared with control aqueous vaccines. The synthetic immunostimulator, muramyl dipeptide, was included with bead vaccines in an attempt to potentiate the immune response. Immunostimulation is achieved by a slow release of antigen coinciding with the gradual breakdown of bead structure.
- Full Text:
- Date Issued: 1988
- Authors: Martin, Michelle Elizabeth Denny
- Date: 1988
- Subjects: Serum albumin , Antigens , Vaccines
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3879 , http://hdl.handle.net/10962/d1001613
- Description: Experimental vaccines have been made by covalently bonding virus particles into polymerized rabbit serum albumin beads. Using Nodamura virus as a model antigen, these model vaccines induced specific humoral antibody production, comparable with that achieved using Freund's adjuvants. Virus specific antibodies were also induced when Nodamura virus was covalently attached to the bead surface using different crosslinkers. However, when poliovirus type 2 (Sabin strain) was polymerized into beads, the levels of neutralizing antibodies were insignificant compared with control aqueous vaccines. The synthetic immunostimulator, muramyl dipeptide, was included with bead vaccines in an attempt to potentiate the immune response. Immunostimulation is achieved by a slow release of antigen coinciding with the gradual breakdown of bead structure.
- Full Text:
- Date Issued: 1988
A novel adjuvant : polymerised serum albumin beads
- Authors: Dewar, John Barr
- Date: 1985
- Subjects: Antigens , Serum albumin
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4104 , http://hdl.handle.net/10962/d1011146 , Antigens , Serum albumin
- Description: Lee, T. et al (1981) proposed the encapsulation of hormones such as progesterone into serum albumin beads, such that their in vivo proteolysis would allow a gradual release of hormone at low levels, for extended hormone action. It was proposed, in the Department of Microbiology, Rhodes University, to replace the hormone component of the above bead formulation, with virus as antigen, in the development of a vaccine. Beads optimally crosslinked at 1% final glutaraldehyde concentration, containing Nodamura virus, were shown to promote an adjuvant effect in vivo, analogous to the release of antigen from Freund's Complete Adjuvant (FCA), so that extended immunostimulation resulted. It was shown that soluble antigen promoted a short-lived primary immune response, peaking around day 25 following inoculation. Antigen presented in beads, on the other hand, initially elicited a low humoral response, but this response gradually increased up to a peak around day 110 post inoculation, before decreasing. No apparent adverse side-effects were noted following inoculation of antigen-containing serum albumin beads, compared to necrosis following antigen in FCA inoculation, supporting the proposal of using albumin homotypic for the test inoculee animal, so that the beads would themselves be non-immunogenic and would merely act as a vehicle in the vaccine formulation. The indirect enzyme-linked immunosorbent assay (ELISA) was used to monitor the humoral response to antigen following inoculation. Results showed that covalent crosslinking of albumin in the formation of the beads did not promote immunogenicity on the part of the chemically altered albumin. The ELISA test was used to indicate the kinetics of the IgG response to Nodamura virus when presented in formulations such as: Freely soluble virus or its subunit; soluble intact virus inactivated by treatment with glutaraldehyde; intact virus entrapped in serum albumin beads cross; linked at different percentage final glutaraldehyde concentrations and also virus subunit prepared in albumin beads. The presence of virus-neutral ising antibodies was noted in serum obtained from rabbits inoculated with virus entrapped in albumin beads. Virus infectivity, titrated in mice, showed protection against virus challenge after incubation of virus with serum obtained above.
- Full Text:
- Date Issued: 1985
- Authors: Dewar, John Barr
- Date: 1985
- Subjects: Antigens , Serum albumin
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4104 , http://hdl.handle.net/10962/d1011146 , Antigens , Serum albumin
- Description: Lee, T. et al (1981) proposed the encapsulation of hormones such as progesterone into serum albumin beads, such that their in vivo proteolysis would allow a gradual release of hormone at low levels, for extended hormone action. It was proposed, in the Department of Microbiology, Rhodes University, to replace the hormone component of the above bead formulation, with virus as antigen, in the development of a vaccine. Beads optimally crosslinked at 1% final glutaraldehyde concentration, containing Nodamura virus, were shown to promote an adjuvant effect in vivo, analogous to the release of antigen from Freund's Complete Adjuvant (FCA), so that extended immunostimulation resulted. It was shown that soluble antigen promoted a short-lived primary immune response, peaking around day 25 following inoculation. Antigen presented in beads, on the other hand, initially elicited a low humoral response, but this response gradually increased up to a peak around day 110 post inoculation, before decreasing. No apparent adverse side-effects were noted following inoculation of antigen-containing serum albumin beads, compared to necrosis following antigen in FCA inoculation, supporting the proposal of using albumin homotypic for the test inoculee animal, so that the beads would themselves be non-immunogenic and would merely act as a vehicle in the vaccine formulation. The indirect enzyme-linked immunosorbent assay (ELISA) was used to monitor the humoral response to antigen following inoculation. Results showed that covalent crosslinking of albumin in the formation of the beads did not promote immunogenicity on the part of the chemically altered albumin. The ELISA test was used to indicate the kinetics of the IgG response to Nodamura virus when presented in formulations such as: Freely soluble virus or its subunit; soluble intact virus inactivated by treatment with glutaraldehyde; intact virus entrapped in serum albumin beads cross; linked at different percentage final glutaraldehyde concentrations and also virus subunit prepared in albumin beads. The presence of virus-neutral ising antibodies was noted in serum obtained from rabbits inoculated with virus entrapped in albumin beads. Virus infectivity, titrated in mice, showed protection against virus challenge after incubation of virus with serum obtained above.
- Full Text:
- Date Issued: 1985
- «
- ‹
- 1
- ›
- »