Human, vector and parasite Hsp90 proteins: a comparative bioinformatics analysis
- Faya, Ngonidzashe, Penkler, David L, Tastan Bishop, Özlem
- Authors: Faya, Ngonidzashe , Penkler, David L , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148038 , vital:38704 , DOI: 10.1016/j.fob.2015.11.003
- Description: The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis.
- Full Text:
- Date Issued: 2015
- Authors: Faya, Ngonidzashe , Penkler, David L , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148038 , vital:38704 , DOI: 10.1016/j.fob.2015.11.003
- Description: The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis.
- Full Text:
- Date Issued: 2015
JMS: a workflow management system and web-based cluster front-end for the Torque resource manager
- Brown, David K, Musyoka, Thommas M, Penkler, David L, Tastan Bishop, Özlem
- Authors: Brown, David K , Musyoka, Thommas M , Penkler, David L , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148049 , vital:38705 , https://arxiv.org/abs/1501.06907
- Description: Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over distributed computer clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing.
- Full Text:
- Date Issued: 2015
- Authors: Brown, David K , Musyoka, Thommas M , Penkler, David L , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148049 , vital:38705 , https://arxiv.org/abs/1501.06907
- Description: Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over distributed computer clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing.
- Full Text:
- Date Issued: 2015
JMS: an open source workflow management system and web-based cluster front-end for high performance computing
- Brown, David K, Penkler, David L, Musyoka, Thommas M, Tastan Bishop, Özlem
- Authors: Brown, David K , Penkler, David L , Musyoka, Thommas M , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162880 , vital:40993 , doi:10.1371/journal.pone.0134273
- Description: Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality.
- Full Text:
- Date Issued: 2015
- Authors: Brown, David K , Penkler, David L , Musyoka, Thommas M , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162880 , vital:40993 , doi:10.1371/journal.pone.0134273
- Description: Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality.
- Full Text:
- Date Issued: 2015
Plasmodium falciparum Hop: detailed analysis on complex formation with Hsp70 and Hsp90
- Hatherley, Rowan, Clitheroe, Crystal-Leigh, Faya, Ngonidzashe, Tastan Bishop, Özlem
- Authors: Hatherley, Rowan , Clitheroe, Crystal-Leigh , Faya, Ngonidzashe , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125708 , vital:35810 , https://doi.10.1016/j.bbrc.2014.11.103
- Description: The heat shock organizing protein (Hop) is important in modulating the activity and co-interaction of two chaperones: heat shock protein 70 and 90 (Hsp70 and Hsp90). Recent research suggested that Plasmodium falciparum Hop (PfHop), PfHsp70 and PfHsp90 form a complex in the trophozoite infective stage. However, there has been little computational research on the malarial Hop protein in complex with other malarial Hsps. Using in silico characterization of the protein, this work showed that individual domains of Hop are evolving at different rates within the protein. Differences between human Hop (HsHop) and PfHop were identified by motif analysis. Homology modeling of PfHop and HsHop in complex with their own cytosolic Hsp90 and Hsp70 C-terminal peptide partners indicated excellent conservation of the Hop concave TPR sites bound to the C-terminal motifs of partner proteins. Further, we analyzed additional binding sites between Hop and Hsp90, and showed, for the first time, that they are distinctly less conserved between human and malaria parasite. These sites are located on the convex surface of Hop TPR2, and involved in interactions with the Hsp90 middle domain. Since the convex sites are less conserved than the concave sites, it makes their potential for malarial inhibitor design extremely attractive (as opposed to the concave sites which have been the focus of previous efforts).
- Full Text:
- Date Issued: 2015
- Authors: Hatherley, Rowan , Clitheroe, Crystal-Leigh , Faya, Ngonidzashe , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125708 , vital:35810 , https://doi.10.1016/j.bbrc.2014.11.103
- Description: The heat shock organizing protein (Hop) is important in modulating the activity and co-interaction of two chaperones: heat shock protein 70 and 90 (Hsp70 and Hsp90). Recent research suggested that Plasmodium falciparum Hop (PfHop), PfHsp70 and PfHsp90 form a complex in the trophozoite infective stage. However, there has been little computational research on the malarial Hop protein in complex with other malarial Hsps. Using in silico characterization of the protein, this work showed that individual domains of Hop are evolving at different rates within the protein. Differences between human Hop (HsHop) and PfHop were identified by motif analysis. Homology modeling of PfHop and HsHop in complex with their own cytosolic Hsp90 and Hsp70 C-terminal peptide partners indicated excellent conservation of the Hop concave TPR sites bound to the C-terminal motifs of partner proteins. Further, we analyzed additional binding sites between Hop and Hsp90, and showed, for the first time, that they are distinctly less conserved between human and malaria parasite. These sites are located on the convex surface of Hop TPR2, and involved in interactions with the Hsp90 middle domain. Since the convex sites are less conserved than the concave sites, it makes their potential for malarial inhibitor design extremely attractive (as opposed to the concave sites which have been the focus of previous efforts).
- Full Text:
- Date Issued: 2015
SANCDB: a South African natural compound database
- Hatherley, Rowan, Brown, David K, Musyoka, Thommas M, Penkler, David L, Faya, Ngonidzashe, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Hatherley, Rowan , Brown, David K , Musyoka, Thommas M , Penkler, David L , Faya, Ngonidzashe , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148337 , vital:38730 , DOI: 10.1186/s13321-015-0080-8
- Description: Natural products (NPs) are important to the drug discovery process. NP research efforts are expanding world-wide and South Africa is no exception to this. While freely-accessible small molecule databases, containing compounds isolated from indigenous sources, have been established in a number of other countries, there is currently no such online database in South Africa.
- Full Text:
- Date Issued: 2015
- Authors: Hatherley, Rowan , Brown, David K , Musyoka, Thommas M , Penkler, David L , Faya, Ngonidzashe , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148337 , vital:38730 , DOI: 10.1186/s13321-015-0080-8
- Description: Natural products (NPs) are important to the drug discovery process. NP research efforts are expanding world-wide and South Africa is no exception to this. While freely-accessible small molecule databases, containing compounds isolated from indigenous sources, have been established in a number of other countries, there is currently no such online database in South Africa.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »