Fabrication and characterization of ciprofloxacin loaded niosomes for transtympanic delivery
- Authors: Mhlanga, Asavela
- Date: 2022-04-06
- Subjects: Drug delivery systems , Liposomes , Ciprofloxacin , Quinolone antibacterial agents , Drug carriers (Pharmacy) , Drug stability , Lamellarity , Niosomes
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/290715 , vital:56777
- Description: Ciprofloxacin (CPH) is a broad-spectrum antibiotic used to treat bone, joint, and skin infections. It is commercially available as an extended-release tablet and as a cream dosage form. CPH is a bactericidal active pharmaceutical ingredient (API) of the fluoroquinolone drug class. It inhibits deoxyribonucleic acid (DNA) replication by inhibiting bacterial DNA topoisomerase and DNA gyrase enzymes. Common adverse effects include nausea, vomiting, unusual fatigue, pale skin, and may increase the risk of tendinitis, which could be a major concern. CPH is, according to the Biopharmaceutics Classification System (BCS), classified as a BCS class IV drug exhibiting low oral bioavailability, low solubility, and intestinal permeability. CPH was chosen as a good candidate for the study because of its stability in solutions, its low molecular weight (331.4 g/mol), and its moderate lipophilicity (log P = 0.28) [16]. The use of conventional ear drops in the ear is effective, avoids hepatic first metabolism and extensive protein binding and may reduce adverse effects as a low dose may be used to achieve a therapeutic effect. However, conventional ear drops and oral antibiotics have a long onset of action and have to be taken/applied in short intervals. For convenience and assurance of a long residence time in the ear, CPH may be delivered by using a niosomal formulation, a liquid at room temperature, to allow administration into the ear without the need to constantly apply the ear drops for long periods of time. A simple, rapid, precise, accurate, reproducible, and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method using ultraviolet (UV) detection for the quantitation of CPH was developed and optimized using a central composite design (CCD). The method was validated using International Conference on Harmonisation (ICH) guidelines and was found to be linear, precise, accurate, and specific for the analysis of CPH. Since the method is specific, it was used to quantify CPH in commercial and experimental formulations and monitor CPH released during in-vitro release testing. The compatibility of CPH and potential excipients was investigated during preformulation studies using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) to identify and select suitable excipients for use during formulation development activities. No apparent interactions were evident between CPH, and the excipients tested. The probe sonication method was used to manufacture CPH loaded niosomes using different surfactants/surfactant combinations, and a combination of Tween® 80: sodium lauryl sulfate (SLS) was found to be the best composition in terms of both entrapment efficiency and Zeta potential. The limits for the independent input variables used for the manufacture included amplitude, sonication time, and amount of cholesterol were determined. Design of experiments (DOE) was used to design the study. The input variables investigated included amplitude, amount of cholesterol, and sonication time. The output or responses monitored included Zeta potential, vesicle size, polydispersity index (PDI), and entrapment efficiency. Non-ionic surfactant systems are predominantly stabilized by steric stabilization, and there is only a minor electrostatic element from adsorbed hydroxyl ions. With the inclusion of SLS it is to be expected that Zeta potential will be a contributing factor. DOE using Box-Behnken design (BBD) and response surface methodology (RSM) in addition to Artificial Neural Networks (ANN) were used for the optimization of the formulation. The optimized formulation had a composition of 1 g cholesterol, 1 g of Tween® 80, 1 g of SLS and was prepared at an amplitude of 11.294 % with a sonication time of 3.304 minutes. The formulation exhibited zero-order release kinetics and had an average pH of 7.45. The formulation was stored at 4 ℃ and 25 ℃ and was assessed for vesicle size, entrapment efficiency, Zeta potential, colour, lamellarity, and PDI every 7 days for 4 weeks. The lead formulation stored at 4 ℃ was more stable than the formulation at 25 ℃ in terms of entrapment efficiency, PDI and vesicle size during the 4-week period. CPH loaded niosomes for transtympanic delivery in the treatment of otitis media were developed and optimized. The technology exhibits sustained release of CPH and has the potential for further development and optimization. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Mhlanga, Asavela
- Date: 2022-04-06
- Subjects: Drug delivery systems , Liposomes , Ciprofloxacin , Quinolone antibacterial agents , Drug carriers (Pharmacy) , Drug stability , Lamellarity , Niosomes
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/290715 , vital:56777
- Description: Ciprofloxacin (CPH) is a broad-spectrum antibiotic used to treat bone, joint, and skin infections. It is commercially available as an extended-release tablet and as a cream dosage form. CPH is a bactericidal active pharmaceutical ingredient (API) of the fluoroquinolone drug class. It inhibits deoxyribonucleic acid (DNA) replication by inhibiting bacterial DNA topoisomerase and DNA gyrase enzymes. Common adverse effects include nausea, vomiting, unusual fatigue, pale skin, and may increase the risk of tendinitis, which could be a major concern. CPH is, according to the Biopharmaceutics Classification System (BCS), classified as a BCS class IV drug exhibiting low oral bioavailability, low solubility, and intestinal permeability. CPH was chosen as a good candidate for the study because of its stability in solutions, its low molecular weight (331.4 g/mol), and its moderate lipophilicity (log P = 0.28) [16]. The use of conventional ear drops in the ear is effective, avoids hepatic first metabolism and extensive protein binding and may reduce adverse effects as a low dose may be used to achieve a therapeutic effect. However, conventional ear drops and oral antibiotics have a long onset of action and have to be taken/applied in short intervals. For convenience and assurance of a long residence time in the ear, CPH may be delivered by using a niosomal formulation, a liquid at room temperature, to allow administration into the ear without the need to constantly apply the ear drops for long periods of time. A simple, rapid, precise, accurate, reproducible, and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method using ultraviolet (UV) detection for the quantitation of CPH was developed and optimized using a central composite design (CCD). The method was validated using International Conference on Harmonisation (ICH) guidelines and was found to be linear, precise, accurate, and specific for the analysis of CPH. Since the method is specific, it was used to quantify CPH in commercial and experimental formulations and monitor CPH released during in-vitro release testing. The compatibility of CPH and potential excipients was investigated during preformulation studies using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) to identify and select suitable excipients for use during formulation development activities. No apparent interactions were evident between CPH, and the excipients tested. The probe sonication method was used to manufacture CPH loaded niosomes using different surfactants/surfactant combinations, and a combination of Tween® 80: sodium lauryl sulfate (SLS) was found to be the best composition in terms of both entrapment efficiency and Zeta potential. The limits for the independent input variables used for the manufacture included amplitude, sonication time, and amount of cholesterol were determined. Design of experiments (DOE) was used to design the study. The input variables investigated included amplitude, amount of cholesterol, and sonication time. The output or responses monitored included Zeta potential, vesicle size, polydispersity index (PDI), and entrapment efficiency. Non-ionic surfactant systems are predominantly stabilized by steric stabilization, and there is only a minor electrostatic element from adsorbed hydroxyl ions. With the inclusion of SLS it is to be expected that Zeta potential will be a contributing factor. DOE using Box-Behnken design (BBD) and response surface methodology (RSM) in addition to Artificial Neural Networks (ANN) were used for the optimization of the formulation. The optimized formulation had a composition of 1 g cholesterol, 1 g of Tween® 80, 1 g of SLS and was prepared at an amplitude of 11.294 % with a sonication time of 3.304 minutes. The formulation exhibited zero-order release kinetics and had an average pH of 7.45. The formulation was stored at 4 ℃ and 25 ℃ and was assessed for vesicle size, entrapment efficiency, Zeta potential, colour, lamellarity, and PDI every 7 days for 4 weeks. The lead formulation stored at 4 ℃ was more stable than the formulation at 25 ℃ in terms of entrapment efficiency, PDI and vesicle size during the 4-week period. CPH loaded niosomes for transtympanic delivery in the treatment of otitis media were developed and optimized. The technology exhibits sustained release of CPH and has the potential for further development and optimization. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2022
- Full Text:
- Date Issued: 2022-04-06
A self-emulsifying delivery system loaded with efavirenz: The case for flax-seed oil
- Authors: Mazonde, Priveledge
- Date: 2021-10-29
- Subjects: Drug delivery systems , Linseed oil , Antiretroviral agents , HIV (Viruses) , Drug carriers (Pharmacy) , Solubility , High performance liquid chromatography , Efavirenz
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192944 , vital:45283
- Description: The feasibility of incorporating efavirenz (EFV), an antiretroviral agent against HIV into a lipid-based self-emulsifying drug delivery system (SEDDS) containing vegetable oils was investigated. EFV has poor aqueous solubility and is classified under the Biopharmaceutical Classification System (BCS) as a class II compound with highly permeability, its aqueous solubility is less than 10 mg/ml and is defined as a practically insoluble compound with a consequent poor bioavailability of approximately 40%, and erratic dissolution behaviour. SEDDS formulations have been shown to improve the aqueous solubility and consequently the bioavailability of BCS II compounds such as EFV. EFV is a first line antiviral agent used in combination with other agents in antiretroviral therapy (ART). Among the number of NNRTIs approved for use in HIV treatment, EFV is one of the most commonly prescribed drug. Statistical methods and Design of Experiments (DoE) using Response Surface Methodology (RSM), specifically a Central Composite Design (CCD), were used to facilitate the development of a reversed-phase high performance liquid chromatographic (HPLC) method for the quantitation of EFV during formulation product and process development studies. A rapid, accurate, precise and sensitive HPLC method with ultraviolet (UV) detection was developed, optimised and validated for the in-vitro analysis of EFV in a total run time under 10 minutes for the elution of both EFV and loratidine which was used as the internal standard (IS). The method was then successfully applied to the determination of EFV in commercially available tablets. Excipient screening was undertaken using solubility studies and revealed that EFV had highest solubility in flaxseed oil in comparison to soybean, macadamia, grapeseed, sunflower and olive oils. The non-ionic Tween® 80 and Span® 20 were selected as surfactant and co-surfactant, respectively with ethanol co-solvent as they exhibited improved miscibility with co-solvent. Pre-formulation studies were undertaken to investigate the compatibility of the API with excipients and to identify a nano-emulsion region and other emulsion types using pseudoternary phase diagrams. The phase behaviour of crude cold pressed flaxseed oil with the selected non-ionic surfactants revealed an area within pseudo-ternary phase diagrams for different surfactant-mixtures formed gels/semisolid structures which can be exploited for other drug delivery strategies that require such properties. Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction (XRD) and Raman spectroscopy were used to identify and assess the compatibility of EFV with chosen excipients. 2 A reduction in the peak intensity was observed for EFV when combined with each hydrophobic/lipid excipient evaluated revealing that there was a marked reduction in the crystallinity of the EFV. A decrease in crystallinity in comparison with the bulk API may indicate that EFV were amorphous or sequestered in a molecular dispersion and exhibited an increased solubility for the molecule. Flaxseed oil was used as the oil phase in studies for the optimization of surfactant mixtures undertaken using DoE, specifically a D-optimal mixtures design with the flaxseed oil content set at 10% m/m was performed. Solutions from the desired optimization function were produced based on desirability and five nanoemulsion formulations were produced and characterized in terms of in vitro release of efavirenz, drug loading capacity, Zeta Potential, droplet sizes and polydispersity index (PDI). Kinetically stable nanoemulsions containing 10% m/m flaxseed oil were successfully manufactured and assessed. Droplet sizes ranged between 156 and 225 nm, Zeta Potential between −24 and −41 mV and all formulations were found to be monodisperse with polydispersity indices ≤ 0.487. SEDDS formulations of EFV in nano-sized carriers were developed and optimised, in vitro drug release varied with varying amounts of ethanol in the formulation producing formulations that exhibited differently modulated drug in-vitro release profiles that may be further manipulated for better performance and therapeutic outcomes in terms of solubility and possibly bioavailability of EFV when delivered using SEDDS rather than using tablets which in turn may lead to better therapeutic outcomes for patients with HIV. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Mazonde, Priveledge
- Date: 2021-10-29
- Subjects: Drug delivery systems , Linseed oil , Antiretroviral agents , HIV (Viruses) , Drug carriers (Pharmacy) , Solubility , High performance liquid chromatography , Efavirenz
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192944 , vital:45283
- Description: The feasibility of incorporating efavirenz (EFV), an antiretroviral agent against HIV into a lipid-based self-emulsifying drug delivery system (SEDDS) containing vegetable oils was investigated. EFV has poor aqueous solubility and is classified under the Biopharmaceutical Classification System (BCS) as a class II compound with highly permeability, its aqueous solubility is less than 10 mg/ml and is defined as a practically insoluble compound with a consequent poor bioavailability of approximately 40%, and erratic dissolution behaviour. SEDDS formulations have been shown to improve the aqueous solubility and consequently the bioavailability of BCS II compounds such as EFV. EFV is a first line antiviral agent used in combination with other agents in antiretroviral therapy (ART). Among the number of NNRTIs approved for use in HIV treatment, EFV is one of the most commonly prescribed drug. Statistical methods and Design of Experiments (DoE) using Response Surface Methodology (RSM), specifically a Central Composite Design (CCD), were used to facilitate the development of a reversed-phase high performance liquid chromatographic (HPLC) method for the quantitation of EFV during formulation product and process development studies. A rapid, accurate, precise and sensitive HPLC method with ultraviolet (UV) detection was developed, optimised and validated for the in-vitro analysis of EFV in a total run time under 10 minutes for the elution of both EFV and loratidine which was used as the internal standard (IS). The method was then successfully applied to the determination of EFV in commercially available tablets. Excipient screening was undertaken using solubility studies and revealed that EFV had highest solubility in flaxseed oil in comparison to soybean, macadamia, grapeseed, sunflower and olive oils. The non-ionic Tween® 80 and Span® 20 were selected as surfactant and co-surfactant, respectively with ethanol co-solvent as they exhibited improved miscibility with co-solvent. Pre-formulation studies were undertaken to investigate the compatibility of the API with excipients and to identify a nano-emulsion region and other emulsion types using pseudoternary phase diagrams. The phase behaviour of crude cold pressed flaxseed oil with the selected non-ionic surfactants revealed an area within pseudo-ternary phase diagrams for different surfactant-mixtures formed gels/semisolid structures which can be exploited for other drug delivery strategies that require such properties. Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction (XRD) and Raman spectroscopy were used to identify and assess the compatibility of EFV with chosen excipients. 2 A reduction in the peak intensity was observed for EFV when combined with each hydrophobic/lipid excipient evaluated revealing that there was a marked reduction in the crystallinity of the EFV. A decrease in crystallinity in comparison with the bulk API may indicate that EFV were amorphous or sequestered in a molecular dispersion and exhibited an increased solubility for the molecule. Flaxseed oil was used as the oil phase in studies for the optimization of surfactant mixtures undertaken using DoE, specifically a D-optimal mixtures design with the flaxseed oil content set at 10% m/m was performed. Solutions from the desired optimization function were produced based on desirability and five nanoemulsion formulations were produced and characterized in terms of in vitro release of efavirenz, drug loading capacity, Zeta Potential, droplet sizes and polydispersity index (PDI). Kinetically stable nanoemulsions containing 10% m/m flaxseed oil were successfully manufactured and assessed. Droplet sizes ranged between 156 and 225 nm, Zeta Potential between −24 and −41 mV and all formulations were found to be monodisperse with polydispersity indices ≤ 0.487. SEDDS formulations of EFV in nano-sized carriers were developed and optimised, in vitro drug release varied with varying amounts of ethanol in the formulation producing formulations that exhibited differently modulated drug in-vitro release profiles that may be further manipulated for better performance and therapeutic outcomes in terms of solubility and possibly bioavailability of EFV when delivered using SEDDS rather than using tablets which in turn may lead to better therapeutic outcomes for patients with HIV. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2021
- Full Text:
- Date Issued: 2021-10-29
Ph-responsive liposomal systems for site-specific pulmonary delivery of anti-tubercular drugs
- Nkanga, Christian Isalomboto
- Authors: Nkanga, Christian Isalomboto
- Date: 2019
- Subjects: Tuberculosis -- Chemotherapy , Lipsomes , Drug carriers (Pharmacy) , Rifampin , Hydrogen-ion concentration , Hydrogen-ion concentration -- Physiological effect
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/125832 , vital:35822
- Description: Tuberculosis (TB) is an infectious disease that has been reported to be the ninth leading cause of death worldwide, even though mostly considered as a poverty related disease. Despite the existence of potent anti-tubercular drugs (ATBDs), such as rifampicin (RIF) and isoniazid (INH), TB remains the major killer among many microbial diseases over the last five years. Although several factors are to be blamed for this deadly status, the most crucial issues encompass both the self-defensiveness of the causative agent (Mycobacterium tuberculosis), including its intra-macrophage location that compromises ATBDs accessibility, and the widespread/off target distribution of ATBDs. The need for novel drug delivery strategies therefore arises to provide selective distribution of ATBDs at the infected site. Among the drug vehicles explored in this field, liposomes have been reported to be the most suitable drug carriers due to their rapid uptake by alveolar macrophages, where M. tuberculosis often resides. Since liposomes experience media of different pH throughout the cell uptake process (endocytosis/phagocytosis), the use of pH change as a stimulus for controlled release looks promising for enhancing intra-macrophage delivery and minimizing premature ‘off-target’ release of ATBDs. However, the costly status of liposome technology, due to the use of sophisticated procedures and expensive materials (especially for pH-dependent delivery, where special lipids are required), may preclude wider developments of liposomal products, especially for the developing world. This study aimed at investigating liposomal encapsulation of pH-sensitive and fluorescent hydrazone derivatives of INH using crude soybean lecithin, as a cost-effective option for site-specific delivery combined with potential bio-imaging features. Another objective was to explore encapsulation of INH hydrazone derivatives with and without RIF in liposomes using a simple and organic solvent-free preparation method. Initially, INH was coupled with 4-hydroxy-benzaldehyde to yield a conjugate (INH-HB) that was encapsulated in liposomes using film hydration method with acceptable encapsulation efficiency (î), about 89 %. The prepared INH-HB loaded liposomes (IHL) were characterized by means of dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The release of INH from IHL was evaluated over 12 hours in media of different pH using dialysis. As hypothesized, pH dependent release of INH from IHL was observed with 22, 69, 83 and 100 % release obtained in media of pH 7.4, 6.4, 5.4 and 4.4, respectively. From this experimental trial, further development was undertaken by conjugating INH to a hydrophobic fluorescent tag, zinc (II) phthalocyanine (PC), through hydrazone linkages. The obtained conjugate (PC-INH) was loaded into liposomes (PIL) that were characterized using various spectroscopic techniques, including UV-Vis absorption and energy dispersive X-ray spectroscopy, which suggested the presence of PC-INH within the lipid bilayers. The release study performed in different pH media revealed 22, 41, 97 and 100 % of INH, respectively released at pH 7.4, 6.4, 5.4 and 4.4. This confirmed the potential of pH-triggered drug release from liposomes loaded with hydrazone drug derivatives. In addition, successful encapsulation of PC-INH using crude soybean lecithin inspired a new opening towards development of multimodal liposomes that could achieve controlled drug release with added benefits of image-guided biological tracking. However, the hydrophobic nature of PC-INH requires an effective strategy that could improve its solubility and favour extensive development. In this context, the tetra-substituted structure of PC-INH brought up the hypothesis that cyclodextrin (CD) complexation would facilitate PC-INH encapsulation in liposomes using an organic solvent-free method, called here the “heating method” (HM). Inclusion complexes of PC-INH with various CDs were therefore investigated, with gamma-CD complex (CP) giving the best results. These complexes were prepared in both solution and solid-state and further comprehensively characterized using UV-Vis spectroscopy, magnetic circular dichroism, NMR spectroscopy, diffusion ordered spectroscopy, DSC, XRD and Fourier transform infrared spectroscopy. CP-loaded liposomes prepared using HM exhibited greater î than film hydration liposomes, about 70 % versus 56 %, respectively. The HM-liposomal system (CPL) exhibited potentially useful nano particulate characteristics (i.e. mean particle size 240 nm and Zeta potential –57 mV), which remained unchanged over 5 weeks of stability study at 4 °C, and pH-dependent INH release behaviour alike PIL. Furthermore, CP was co-encapsulated with rifampicin (RIF) in liposomes using HM to investigate the possibility for future combination therapy. 1H-NMR spectroscopy, DSC, XRD and photophysical studies were performed for molecular assessment of the cargo in CP-RIF co-loaded liposomes (CPRL). The mean particle size, Zeta potential and î of CPRL were respectively 594 nm, –50 mV, 58 % for CP and 86 % for RIF. CPRL exhibited much higher release rates for both INH and RIF at pH 6.4, compared to those tested at pH 7.4. In addition, there was no cytotoxicity on HeLa cells, but attractive lung fibroblasts and epithelial cells uptake and viability. Hence, CPRL are promising for targeted ATBD delivery to alveolar macrophages following pulmonary administration. Overall, the developed pH-responsive liposomal system holds the promise for new openings towards wider developments of multifunctional liposomes for site-specific controlled pulmonary delivery of antimicrobials drugs.
- Full Text:
- Date Issued: 2019
- Authors: Nkanga, Christian Isalomboto
- Date: 2019
- Subjects: Tuberculosis -- Chemotherapy , Lipsomes , Drug carriers (Pharmacy) , Rifampin , Hydrogen-ion concentration , Hydrogen-ion concentration -- Physiological effect
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/125832 , vital:35822
- Description: Tuberculosis (TB) is an infectious disease that has been reported to be the ninth leading cause of death worldwide, even though mostly considered as a poverty related disease. Despite the existence of potent anti-tubercular drugs (ATBDs), such as rifampicin (RIF) and isoniazid (INH), TB remains the major killer among many microbial diseases over the last five years. Although several factors are to be blamed for this deadly status, the most crucial issues encompass both the self-defensiveness of the causative agent (Mycobacterium tuberculosis), including its intra-macrophage location that compromises ATBDs accessibility, and the widespread/off target distribution of ATBDs. The need for novel drug delivery strategies therefore arises to provide selective distribution of ATBDs at the infected site. Among the drug vehicles explored in this field, liposomes have been reported to be the most suitable drug carriers due to their rapid uptake by alveolar macrophages, where M. tuberculosis often resides. Since liposomes experience media of different pH throughout the cell uptake process (endocytosis/phagocytosis), the use of pH change as a stimulus for controlled release looks promising for enhancing intra-macrophage delivery and minimizing premature ‘off-target’ release of ATBDs. However, the costly status of liposome technology, due to the use of sophisticated procedures and expensive materials (especially for pH-dependent delivery, where special lipids are required), may preclude wider developments of liposomal products, especially for the developing world. This study aimed at investigating liposomal encapsulation of pH-sensitive and fluorescent hydrazone derivatives of INH using crude soybean lecithin, as a cost-effective option for site-specific delivery combined with potential bio-imaging features. Another objective was to explore encapsulation of INH hydrazone derivatives with and without RIF in liposomes using a simple and organic solvent-free preparation method. Initially, INH was coupled with 4-hydroxy-benzaldehyde to yield a conjugate (INH-HB) that was encapsulated in liposomes using film hydration method with acceptable encapsulation efficiency (î), about 89 %. The prepared INH-HB loaded liposomes (IHL) were characterized by means of dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The release of INH from IHL was evaluated over 12 hours in media of different pH using dialysis. As hypothesized, pH dependent release of INH from IHL was observed with 22, 69, 83 and 100 % release obtained in media of pH 7.4, 6.4, 5.4 and 4.4, respectively. From this experimental trial, further development was undertaken by conjugating INH to a hydrophobic fluorescent tag, zinc (II) phthalocyanine (PC), through hydrazone linkages. The obtained conjugate (PC-INH) was loaded into liposomes (PIL) that were characterized using various spectroscopic techniques, including UV-Vis absorption and energy dispersive X-ray spectroscopy, which suggested the presence of PC-INH within the lipid bilayers. The release study performed in different pH media revealed 22, 41, 97 and 100 % of INH, respectively released at pH 7.4, 6.4, 5.4 and 4.4. This confirmed the potential of pH-triggered drug release from liposomes loaded with hydrazone drug derivatives. In addition, successful encapsulation of PC-INH using crude soybean lecithin inspired a new opening towards development of multimodal liposomes that could achieve controlled drug release with added benefits of image-guided biological tracking. However, the hydrophobic nature of PC-INH requires an effective strategy that could improve its solubility and favour extensive development. In this context, the tetra-substituted structure of PC-INH brought up the hypothesis that cyclodextrin (CD) complexation would facilitate PC-INH encapsulation in liposomes using an organic solvent-free method, called here the “heating method” (HM). Inclusion complexes of PC-INH with various CDs were therefore investigated, with gamma-CD complex (CP) giving the best results. These complexes were prepared in both solution and solid-state and further comprehensively characterized using UV-Vis spectroscopy, magnetic circular dichroism, NMR spectroscopy, diffusion ordered spectroscopy, DSC, XRD and Fourier transform infrared spectroscopy. CP-loaded liposomes prepared using HM exhibited greater î than film hydration liposomes, about 70 % versus 56 %, respectively. The HM-liposomal system (CPL) exhibited potentially useful nano particulate characteristics (i.e. mean particle size 240 nm and Zeta potential –57 mV), which remained unchanged over 5 weeks of stability study at 4 °C, and pH-dependent INH release behaviour alike PIL. Furthermore, CP was co-encapsulated with rifampicin (RIF) in liposomes using HM to investigate the possibility for future combination therapy. 1H-NMR spectroscopy, DSC, XRD and photophysical studies were performed for molecular assessment of the cargo in CP-RIF co-loaded liposomes (CPRL). The mean particle size, Zeta potential and î of CPRL were respectively 594 nm, –50 mV, 58 % for CP and 86 % for RIF. CPRL exhibited much higher release rates for both INH and RIF at pH 6.4, compared to those tested at pH 7.4. In addition, there was no cytotoxicity on HeLa cells, but attractive lung fibroblasts and epithelial cells uptake and viability. Hence, CPRL are promising for targeted ATBD delivery to alveolar macrophages following pulmonary administration. Overall, the developed pH-responsive liposomal system holds the promise for new openings towards wider developments of multifunctional liposomes for site-specific controlled pulmonary delivery of antimicrobials drugs.
- Full Text:
- Date Issued: 2019
Uptake of liposomes into bacterial cells
- Authors: Oidu, Benjamin
- Date: 2013
- Subjects: Liposomes , Drug carriers (Pharmacy)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10165 , http://hdl.handle.net/10948/d1021010
- Description: Liposomes are small phospholipid vesicles that have been widely investigated as drug carriers for the delivery of therapeutic agents. A variety of liposome formulations are presently under clinical trial exploration, while others have already been approved for clinical use. The aim of this study was to optimize liposome uptake into bacterial cells. Both gram-positive and gram-negative bacteria were used in the study as well as Candida albicans.Response surface methodology (RSM) using a central composite design (CCD) model was used to optimize liposomal formulations of carboxyfluorescien (CF) for each of the three microbes, and also the three microbes in combination namely; Staphylococcus aureus (Sa), Escherichia coli (Ec) and Candida albicans (Ca). Percentage of CF encapsulated and CF increase in Uptake were investigated with respect to two independent variables that were, cholesterol (CHOL) and stearylamine (SA) content. Design Expert 8 was used for the purpose of finding the combination of independent variables that would yield an optimal formulation for each microbe and the three microbes in combination. The model selected by the software managed to reasonably correlate the predicted models to the experimental data. Encapsulation of carboxyfluorescien (CF) into a liposome formulation enhanced its uptake by Staphylococcus aureus and Escherichia coli as well as Candida albicans. This was evident in the increase in CF uptake when the uptake rate of free CF was compared with that of liposomal CF.
- Full Text:
- Date Issued: 2013
- Authors: Oidu, Benjamin
- Date: 2013
- Subjects: Liposomes , Drug carriers (Pharmacy)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10165 , http://hdl.handle.net/10948/d1021010
- Description: Liposomes are small phospholipid vesicles that have been widely investigated as drug carriers for the delivery of therapeutic agents. A variety of liposome formulations are presently under clinical trial exploration, while others have already been approved for clinical use. The aim of this study was to optimize liposome uptake into bacterial cells. Both gram-positive and gram-negative bacteria were used in the study as well as Candida albicans.Response surface methodology (RSM) using a central composite design (CCD) model was used to optimize liposomal formulations of carboxyfluorescien (CF) for each of the three microbes, and also the three microbes in combination namely; Staphylococcus aureus (Sa), Escherichia coli (Ec) and Candida albicans (Ca). Percentage of CF encapsulated and CF increase in Uptake were investigated with respect to two independent variables that were, cholesterol (CHOL) and stearylamine (SA) content. Design Expert 8 was used for the purpose of finding the combination of independent variables that would yield an optimal formulation for each microbe and the three microbes in combination. The model selected by the software managed to reasonably correlate the predicted models to the experimental data. Encapsulation of carboxyfluorescien (CF) into a liposome formulation enhanced its uptake by Staphylococcus aureus and Escherichia coli as well as Candida albicans. This was evident in the increase in CF uptake when the uptake rate of free CF was compared with that of liposomal CF.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »