The design of quantum dots and their conjugates as luminescent probes for analyte sensing
- Authors: Adegoke, Oluwasesan
- Date: 2014
- Subjects: Quantum dots Anolytes Luminescent probes Luminescence spectroscopy Phthalocyanines Nanoparticles
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4457 , http://hdl.handle.net/10962/d1010866
- Description: The design and applications of quantum dots (QDs) as fluorescent probes for analyte sensing is presented. Cadmium based thiol-capped QDs were employed as probe for the detection of analytes. Comparative studies between core CdTe and core-shell CdTe@ZnS QDs showed that the overall sensitivity and selectivity of the sensor was dependent on the nature of the capping agent and the QDs employed, hence making CdTe@ZnS QDs a more superior sensor than the core. To explore the luminescent sensing of QDs based on the fluorescence “turn ON” mode, L-glutathione-capped CdTe QDs was conjugated to 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT) to form a QDs-4AT conjugate system. The QDs-4AT nanoprobe was highly selective and sensitive to the detection of bromide ion with a very low limit of detection. Subsequently, metallo-phthalocyanines (MPcs) were employed as host molecules on the surface of QDs based on the covalent linking of the QDs to the MPc. Elucidation of the reaction mechanism showed that the fluorescence “turn ON” effect of the QDs-MPc probe in the presence of the analyte was due to axial ligation of the analytes to the Pc ring. Studies showed that the type of substituent attached to the MPc ring influenced the overall sensitivity of the probe. Additionally, a comparative investigation using newly synthesized phthalocyanine and triaza-benzcorrole complexes was conducted when these complexes were conjugated to CdSe@ZnS QDs for analyte sensing. Results showed that the triaza-benzcorrole complex can be employed as a host-molecule sensor but displayed a lower sensitivity for analyte sensing in comparison to the phthalocyanine complex.
- Full Text:
- Date Issued: 2014
- Authors: Adegoke, Oluwasesan
- Date: 2014
- Subjects: Quantum dots Anolytes Luminescent probes Luminescence spectroscopy Phthalocyanines Nanoparticles
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4457 , http://hdl.handle.net/10962/d1010866
- Description: The design and applications of quantum dots (QDs) as fluorescent probes for analyte sensing is presented. Cadmium based thiol-capped QDs were employed as probe for the detection of analytes. Comparative studies between core CdTe and core-shell CdTe@ZnS QDs showed that the overall sensitivity and selectivity of the sensor was dependent on the nature of the capping agent and the QDs employed, hence making CdTe@ZnS QDs a more superior sensor than the core. To explore the luminescent sensing of QDs based on the fluorescence “turn ON” mode, L-glutathione-capped CdTe QDs was conjugated to 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT) to form a QDs-4AT conjugate system. The QDs-4AT nanoprobe was highly selective and sensitive to the detection of bromide ion with a very low limit of detection. Subsequently, metallo-phthalocyanines (MPcs) were employed as host molecules on the surface of QDs based on the covalent linking of the QDs to the MPc. Elucidation of the reaction mechanism showed that the fluorescence “turn ON” effect of the QDs-MPc probe in the presence of the analyte was due to axial ligation of the analytes to the Pc ring. Studies showed that the type of substituent attached to the MPc ring influenced the overall sensitivity of the probe. Additionally, a comparative investigation using newly synthesized phthalocyanine and triaza-benzcorrole complexes was conducted when these complexes were conjugated to CdSe@ZnS QDs for analyte sensing. Results showed that the triaza-benzcorrole complex can be employed as a host-molecule sensor but displayed a lower sensitivity for analyte sensing in comparison to the phthalocyanine complex.
- Full Text:
- Date Issued: 2014
Catalytic activities of metallophthalocyanines towards detection and transformation of pollutants
- Authors: Agboola, Bolade Oyeyinka
- Date: 2007
- Subjects: Phthalocyanines Electrochemistry Pollutants -- Biodegradation Pollutants -- Measurement
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4427 , http://hdl.handle.net/10962/d1006922
- Description: Syntheses, spectral, electrochemical and spectroelectrochemical studies of new thiol-derivatised MPc complexes were satisfactorily carried out. For the first time, spectroelectrochemistry gave evidence for the formation of Ni²⁺/Ni⁺ process in a NiPc complex. Significant insights as to the nature of Fe⁺Pc and Ni⁺Pc spectra were obtained. Transformations of chlorophenols using chemical and photochemical methods are presented. For cobalt tetrasulphophthalocyanine catalysed oxidation of chlorophenols using hydrogen peroxide as the oxidant, types of oxidation products formed depended on the solvent conditions. Photolysis of aqueous solutions of chlorophenols in the presence of immobilised non-transition metal phthalocyanine photosensitisers onto Amerlite® was carried out. For the first time, MPcS[subscript mix] complexes were immobilised on Amberlite® for use in heterogeneous photocatalysis. Photolysis of the chlorophenols resulted mainly in the formation of chlorobenzoquinone derivatives. The generation of singlet oxygen (¹O₂) by these immobilised MPc photosensitisers was found to play a major role in their photoactivities. Modifications of gold electrodes with the newly synthesised thiol-derivatised MPc complexes via electropolymerisation and SAM techniques are presented. Cyclic voltammetry, impedance spectroscopy (NiPcs only) and spectroelectrochemical techniques (NiPcs only) confirmed that the complexes formed films on gold electrodes. Stable and well packed SAM films as evidenced by the voltammetric characterisation were obtained. For the first time, optimisation of the time for SAM formation based on CV technique was studied. First example of a formation of MnPc-SAM was achieved. Catalytic activities of the NiPc towards chlorophenol depended on the nature of the NiPc in the polymer films and also anti-fouling ability of the films depended on polymer film thickness. The FeTBMPc polymer modified gold electrode showed the best catalytic activity in terms of peak potential, E[subscript p] when compared to reported work in literature for nitrate electrooxidation. Cyclic voltammetry and spectroscopy studies showed that the CoPcs, FePcs and NiPcs catalysed nitrite oxidation involve 2 electrons in total while that of McPcs involve 1 electron. Better catalytic performance towards sulphite electrooxidation were obtained for the CoPcs, FePcs and MnPcs which have metal based redox processes within the range of the sulphite electrooxidation peak while the NiPcs which did not show metal based oxidation reaction performed less.
- Full Text:
- Date Issued: 2007
- Authors: Agboola, Bolade Oyeyinka
- Date: 2007
- Subjects: Phthalocyanines Electrochemistry Pollutants -- Biodegradation Pollutants -- Measurement
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4427 , http://hdl.handle.net/10962/d1006922
- Description: Syntheses, spectral, electrochemical and spectroelectrochemical studies of new thiol-derivatised MPc complexes were satisfactorily carried out. For the first time, spectroelectrochemistry gave evidence for the formation of Ni²⁺/Ni⁺ process in a NiPc complex. Significant insights as to the nature of Fe⁺Pc and Ni⁺Pc spectra were obtained. Transformations of chlorophenols using chemical and photochemical methods are presented. For cobalt tetrasulphophthalocyanine catalysed oxidation of chlorophenols using hydrogen peroxide as the oxidant, types of oxidation products formed depended on the solvent conditions. Photolysis of aqueous solutions of chlorophenols in the presence of immobilised non-transition metal phthalocyanine photosensitisers onto Amerlite® was carried out. For the first time, MPcS[subscript mix] complexes were immobilised on Amberlite® for use in heterogeneous photocatalysis. Photolysis of the chlorophenols resulted mainly in the formation of chlorobenzoquinone derivatives. The generation of singlet oxygen (¹O₂) by these immobilised MPc photosensitisers was found to play a major role in their photoactivities. Modifications of gold electrodes with the newly synthesised thiol-derivatised MPc complexes via electropolymerisation and SAM techniques are presented. Cyclic voltammetry, impedance spectroscopy (NiPcs only) and spectroelectrochemical techniques (NiPcs only) confirmed that the complexes formed films on gold electrodes. Stable and well packed SAM films as evidenced by the voltammetric characterisation were obtained. For the first time, optimisation of the time for SAM formation based on CV technique was studied. First example of a formation of MnPc-SAM was achieved. Catalytic activities of the NiPc towards chlorophenol depended on the nature of the NiPc in the polymer films and also anti-fouling ability of the films depended on polymer film thickness. The FeTBMPc polymer modified gold electrode showed the best catalytic activity in terms of peak potential, E[subscript p] when compared to reported work in literature for nitrate electrooxidation. Cyclic voltammetry and spectroscopy studies showed that the CoPcs, FePcs and NiPcs catalysed nitrite oxidation involve 2 electrons in total while that of McPcs involve 1 electron. Better catalytic performance towards sulphite electrooxidation were obtained for the CoPcs, FePcs and MnPcs which have metal based redox processes within the range of the sulphite electrooxidation peak while the NiPcs which did not show metal based oxidation reaction performed less.
- Full Text:
- Date Issued: 2007
Surface properties and electrocatalytic applications of metallophthalocyanines confined on electrode surfaces
- Authors: Akinbulu, Isaac Adebayo
- Date: 2011
- Subjects: Phthalocyanines Electrochemistry Electrocatalysis Pesticides
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4365 , http://hdl.handle.net/10962/d1005030
- Description: New cobalt (13, 16 19 and 22), manganese (14, 17, 20 and 23) and iron (15, 18, 21 and 24)phthalocyanine complexes were synthesized and characterized. The UV-Vis spectral properties of the complexes were typical of the nature of central metal and position of substituent on the Pc ligand. Their electrochemical behaviors were signatures of the central metals, with varying influences of the nature and position of substituents. Nanocomposite of complex 18 and single walled carbon nanotubes (SWCNTs) (SWCNT-18)was fabricated. Formation of this nano-composite was confirmed by infrared (IR)spectroscopy, X-ray diffraction (XRD) spectroscopy and transmission electron microscopy (TEM). Self-assembled monolayers (SAMs) of SWCNT-18, complexes 13-15, and 20 were electropolymerized on glassy carbon electrodes (GCE). Complex 14 was also electrodeposited on GCE. Surface properties of the SAMs were consistent with the molecular feature of the substituent and the nature of central metal in the adsorbed species, while those of the MnPc modified GCEs were dependent on point of substitution and number of substituent. The SAM-modified gold electrodes were used for the electrocatalytic oxidation of the carbamate insecticide, carbofuran. Amplification of the current signal of the insecticide, at more energetically feasible oxidation potentials, on the SAM-modified gold electrodes, relative to bare gold electrode,justified electrocatalysis. There was enhanced sensitivity (attributed to the presence of SWCNT) of the SWCNT-18-SAM-modified gold electrode towards carbofuran, relative to the signals observed on the other SAMs. Current response of the insecticide,bendiocarb, was also intensified, at more favorable oxidation potentials, on the MnPc (14 and 17) modified GCEs, relative to the response on bare GCE, substantiating electrocatalysis. Also, catalysis of the oxidation of the herbicide, bentazon, was observed on polymeric film of complex 20. The current response of the herbicide on this film was better than that observed on bare GCE. Electrocatalysis of the analytes, on the respective modified electrodes, occurred via closely related mechanisms.
- Full Text:
- Date Issued: 2011
- Authors: Akinbulu, Isaac Adebayo
- Date: 2011
- Subjects: Phthalocyanines Electrochemistry Electrocatalysis Pesticides
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4365 , http://hdl.handle.net/10962/d1005030
- Description: New cobalt (13, 16 19 and 22), manganese (14, 17, 20 and 23) and iron (15, 18, 21 and 24)phthalocyanine complexes were synthesized and characterized. The UV-Vis spectral properties of the complexes were typical of the nature of central metal and position of substituent on the Pc ligand. Their electrochemical behaviors were signatures of the central metals, with varying influences of the nature and position of substituents. Nanocomposite of complex 18 and single walled carbon nanotubes (SWCNTs) (SWCNT-18)was fabricated. Formation of this nano-composite was confirmed by infrared (IR)spectroscopy, X-ray diffraction (XRD) spectroscopy and transmission electron microscopy (TEM). Self-assembled monolayers (SAMs) of SWCNT-18, complexes 13-15, and 20 were electropolymerized on glassy carbon electrodes (GCE). Complex 14 was also electrodeposited on GCE. Surface properties of the SAMs were consistent with the molecular feature of the substituent and the nature of central metal in the adsorbed species, while those of the MnPc modified GCEs were dependent on point of substitution and number of substituent. The SAM-modified gold electrodes were used for the electrocatalytic oxidation of the carbamate insecticide, carbofuran. Amplification of the current signal of the insecticide, at more energetically feasible oxidation potentials, on the SAM-modified gold electrodes, relative to bare gold electrode,justified electrocatalysis. There was enhanced sensitivity (attributed to the presence of SWCNT) of the SWCNT-18-SAM-modified gold electrode towards carbofuran, relative to the signals observed on the other SAMs. Current response of the insecticide,bendiocarb, was also intensified, at more favorable oxidation potentials, on the MnPc (14 and 17) modified GCEs, relative to the response on bare GCE, substantiating electrocatalysis. Also, catalysis of the oxidation of the herbicide, bentazon, was observed on polymeric film of complex 20. The current response of the herbicide on this film was better than that observed on bare GCE. Electrocatalysis of the analytes, on the respective modified electrodes, occurred via closely related mechanisms.
- Full Text:
- Date Issued: 2011
Nonlinear optical responses of phthalocyanines in the presence of nanomaterials or when embedded in polymeric materials
- Authors: Bankole, Owolabi Mutolib
- Date: 2017
- Subjects: Phthalocyanines , Phthalocyanines -- Optical properties , Alkynes , Triazoles , Nonlinear optics , Photochemistry , Complex compounds , Amines , Mercaptopyridine
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/45794 , vital:25548
- Description: This work describes the synthesis, photophysical and nonlinear optical characterizations of alkynyl Pcs (1, 2, 3, 8 and 9), 1,2,3-triazole ZnPc (4), mercaptopyridine Pcs (5, 6 and 7) and amino Pcs (10 and 11). Complexes 1, 2, 4, 7, 8, 9 and 11 were newly synthesized and characterized using techniques including 1H-NMR, MALDI-TOF, UV-visible spectrophotometry, FTIR and elemental analysis. The results of the characterizations were in good agreement with their molecular structures, and confirmed the purity of the new molecules. Complex 10 was covalently linked to pristine graphene (GQDs), nitrogen- doped (NGQDs), and sulfur-nitrogen co-doped (SNGQDs) graphene quantum dots; gold nanoparticles (AuNPs); poly(acrylic acid) (PAA); Fe3O4@Ag core-shell and Fe3O4- Ag hybrid nanoparticles via covalent bonding. Complex 11 was linked to Agx Auy alloy nanoparticles via NH2-Au and/or Au-S bonding, 2 and 3 were linked to gold nanoparticles (AuNPs) via clicked reactions. Evidence of successful conjugation of 2, 3, 10 and 11 to nanomaterials was revealed within the UV-vis, EDS, TEM, XRD and XPS spectra. Optical limiting (OL) responses of the samples were evaluated using open aperture Z-scan technique at 532 nm and 10 ns radiation in solution or when embedded in polymer mixtures. The analyses of the Z-scan data for the studied samples did fit to a two-photon absorption mechanism (2PA), but the Pcs and Pc-nanomaterial or polymer composites also possess the multi-photon absorption mechanisms aided by the triplet-triplet population to have reverse saturable absorption (RSA) occur. Phthalocyanines doped in polymer matrices showed larger nonlinear absorption coefficients (ßeff), third-order susceptibility (Im [x(3)]) and second-order hyperpolarizability (y), with an accompanying low intensity threshold (Ium) than in solution. Aggregation in DMSO negatively affected NLO behaviour of Pcs (8 as a case study) at low laser power, and improved at relatively higher laser power. Heavy atom-substituted Pcs (6) enhanced NLO and OL properties than lighter atoms such as 5 and 7. Direct relationship between enhanced photophysical properties and nonlinear effects favoured by excited triplet absorption of the 2, 3, 10 and 11 in presence of nanomaterials was established. Major factor responsible for the enhanced nonlinearities of 10 in the presence of NGQDs and SNGQDs were fully described and attributed to the surface defects caused by the presence of heteroatoms such as nitrogen and sulfur. The studies showed that phthalocyanines-nanomaterial composites were useful in applications such as optical switching, pulse compressor and laser pulse narrowing.
- Full Text:
- Date Issued: 2017
- Authors: Bankole, Owolabi Mutolib
- Date: 2017
- Subjects: Phthalocyanines , Phthalocyanines -- Optical properties , Alkynes , Triazoles , Nonlinear optics , Photochemistry , Complex compounds , Amines , Mercaptopyridine
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/45794 , vital:25548
- Description: This work describes the synthesis, photophysical and nonlinear optical characterizations of alkynyl Pcs (1, 2, 3, 8 and 9), 1,2,3-triazole ZnPc (4), mercaptopyridine Pcs (5, 6 and 7) and amino Pcs (10 and 11). Complexes 1, 2, 4, 7, 8, 9 and 11 were newly synthesized and characterized using techniques including 1H-NMR, MALDI-TOF, UV-visible spectrophotometry, FTIR and elemental analysis. The results of the characterizations were in good agreement with their molecular structures, and confirmed the purity of the new molecules. Complex 10 was covalently linked to pristine graphene (GQDs), nitrogen- doped (NGQDs), and sulfur-nitrogen co-doped (SNGQDs) graphene quantum dots; gold nanoparticles (AuNPs); poly(acrylic acid) (PAA); Fe3O4@Ag core-shell and Fe3O4- Ag hybrid nanoparticles via covalent bonding. Complex 11 was linked to Agx Auy alloy nanoparticles via NH2-Au and/or Au-S bonding, 2 and 3 were linked to gold nanoparticles (AuNPs) via clicked reactions. Evidence of successful conjugation of 2, 3, 10 and 11 to nanomaterials was revealed within the UV-vis, EDS, TEM, XRD and XPS spectra. Optical limiting (OL) responses of the samples were evaluated using open aperture Z-scan technique at 532 nm and 10 ns radiation in solution or when embedded in polymer mixtures. The analyses of the Z-scan data for the studied samples did fit to a two-photon absorption mechanism (2PA), but the Pcs and Pc-nanomaterial or polymer composites also possess the multi-photon absorption mechanisms aided by the triplet-triplet population to have reverse saturable absorption (RSA) occur. Phthalocyanines doped in polymer matrices showed larger nonlinear absorption coefficients (ßeff), third-order susceptibility (Im [x(3)]) and second-order hyperpolarizability (y), with an accompanying low intensity threshold (Ium) than in solution. Aggregation in DMSO negatively affected NLO behaviour of Pcs (8 as a case study) at low laser power, and improved at relatively higher laser power. Heavy atom-substituted Pcs (6) enhanced NLO and OL properties than lighter atoms such as 5 and 7. Direct relationship between enhanced photophysical properties and nonlinear effects favoured by excited triplet absorption of the 2, 3, 10 and 11 in presence of nanomaterials was established. Major factor responsible for the enhanced nonlinearities of 10 in the presence of NGQDs and SNGQDs were fully described and attributed to the surface defects caused by the presence of heteroatoms such as nitrogen and sulfur. The studies showed that phthalocyanines-nanomaterial composites were useful in applications such as optical switching, pulse compressor and laser pulse narrowing.
- Full Text:
- Date Issued: 2017
Aptamer-based biosensor for prostate specific antigen detection using cobalt phthalocyanine-exfoliated graphite composites
- Authors: Benise, Emihle
- Date: 2024-04-04
- Subjects: Aptamer , Exfoliated graphite nano-platelets , Phthalocyanines , Impedance spectroscopy , Prostate-specific antigen
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/434850 , vital:73110
- Description: The work focuses on the development of biosensors and their use for the detection of prostate specific antigen (PSA). Four cobalt phthalocyanines (CoPcs) complexes: (1) cobalt tetra pyridyloxy phthalocyanine, (2) cobalt tetra acetamidophenoxy phthalocyanine, (3) cobalt tris(acetamidophenoxy) mono benzoic acid phthalocyanine, and (4) cobalt tris(acetamidophenoxy) mono propionic acid phthalocyanine, an exfoliated graphite (EG), and aptamer are used to make probes for PSA detection. Each complex is π-π stacked onto the EG to form EG-CoPc(π-π) hybrid which was used to modify a glassy carbon electrode (GCE). EG and CoPc were also used to modify the GCE sequential (seq) with CoPc on top to give GCE-EG-CoPc(seq). For the detection PSA, PSA specific aptamer was either sequential added or covalently linked to complexes 3 and 4 on the modified electrodes and was only sequentially added onto complexes 1 and 2 modified electrodes. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) were the techniques used for the detection of PSA. The electrodes were found to be selective in bovine serum albumin, glucose and cysteine and stable when 50 DPV scans were run. Electrodes gave good % recovery when human serum was spiked with different PSA concentrations. , Thesis (MSc) -- Faculty of Science, Chemistry, 2024
- Full Text:
- Date Issued: 2024-04-04
- Authors: Benise, Emihle
- Date: 2024-04-04
- Subjects: Aptamer , Exfoliated graphite nano-platelets , Phthalocyanines , Impedance spectroscopy , Prostate-specific antigen
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/434850 , vital:73110
- Description: The work focuses on the development of biosensors and their use for the detection of prostate specific antigen (PSA). Four cobalt phthalocyanines (CoPcs) complexes: (1) cobalt tetra pyridyloxy phthalocyanine, (2) cobalt tetra acetamidophenoxy phthalocyanine, (3) cobalt tris(acetamidophenoxy) mono benzoic acid phthalocyanine, and (4) cobalt tris(acetamidophenoxy) mono propionic acid phthalocyanine, an exfoliated graphite (EG), and aptamer are used to make probes for PSA detection. Each complex is π-π stacked onto the EG to form EG-CoPc(π-π) hybrid which was used to modify a glassy carbon electrode (GCE). EG and CoPc were also used to modify the GCE sequential (seq) with CoPc on top to give GCE-EG-CoPc(seq). For the detection PSA, PSA specific aptamer was either sequential added or covalently linked to complexes 3 and 4 on the modified electrodes and was only sequentially added onto complexes 1 and 2 modified electrodes. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) were the techniques used for the detection of PSA. The electrodes were found to be selective in bovine serum albumin, glucose and cysteine and stable when 50 DPV scans were run. Electrodes gave good % recovery when human serum was spiked with different PSA concentrations. , Thesis (MSc) -- Faculty of Science, Chemistry, 2024
- Full Text:
- Date Issued: 2024-04-04
Nonlinear optical studies of metallophtalocyanines and hemiporphyrazines in solution
- Authors: Britton, Jonathan
- Date: 2014
- Subjects: Phthalocyanines Photochemistry Nanoparticles Nanostructured materials Polymers Quantum dots
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4464 , http://hdl.handle.net/10962/d1011608
- Description: This thesis presents the study of the effects of CdTe-TGA quantum dots (QDs) on optical limiting ability of different phthalocyanine (Pc) complexes (5-12) containing Zn, Ga, In central metals and substituted with benzyloxyphenoxy, phenoxy, tertbutylphenoxy and amino groups in solution and in poly (methyl methacrylate) (PMMA) films. The optical limiting parameters of Pcs were higher for tertbutylphenoxy when compared to benzyloxyphenoxy and phenoxy substituents, in DMSO. Non-peripheral substitution decreased the optical limiting parameters. Third-order susceptibility (Im[χ⁽³⁾]/α) values of Pcs in the absence and presence of CdTe QDs were in the 10⁻¹² to 10⁻¹° esu cm range. Hyperpolarizabilities (γ) ranged from 10⁻³¹ to 10⁻²⁹ esu L for Pc alone or in mixture with QDs. The effect on the optical limiting abilities of twelve embedded phthalocyanines containing In, Ga, Zn and Al as central metals in polymer thin films was also examined. The effect of forming a covalent link zinc tetraamino phthalocyanine (12) with poly (methyl acrylic acid) (PMAA) and Zn (13) and OHAl (14) octacarboxy phthalocyanines to polyethylenimine (PEI) was also studied. The hyperpolarizability of the twelve phthalocyanines in polymer was found to be in the range of 10⁻²⁶ to 10⁻²⁴ esu.L. This is significantly higher than the hyperpolarizabilities of these phthalocyanines in solution. Non-linear optical (NLO) parameters were determined for phthalocyanine complexes containing In, Ga and Zn as central metals when embedded in PMMA polymer in the presence of quantum dots (QDs). The QDs mainly employed were CdTe-TGA (TGA = thioglylcolic acid). Triplet lifetimes increased as k (excited state (σex) to ground state (σg) absorption cross section ratio) values decreased with the addition of the CdTe-TGA to the phthalocyanines. The saturation energy density (Fsat) values were smaller in the films when compared to the solutions. Complex 7 tetrasubstituted with tert-butylphenoxy groups at non-peripheral positions was also studied in the presence of CdS-TGA, CdSe-TGA, fullerenes and single walled carbon nanotubes. There is a general improvement in optical limiting ability of Pc complexes in the presence of nanomaterials (NMs). Degradation studies seem to indicate that placing a phthalocyanine within a polymer thin film may protect it slightly from photo- and thermal degradation. 3(4), 15(16)-Bis-(4 -tert-butyl-phenoxy)-10, 22-diaminohemiporphyrazinato chloroindium hemiporphyrazine was synthesized from 1, 3, 5-triaminobenzene and 4-tert-butyl-phenoxyisoindoline. The structure of the complex was confirmed using mass, nuclear magnetic resonance and infrared spectroscopies. The nonlinear parameters of the compound was also analyzed in dimethylformamide and found to be significantly greater than previously analyzed phthalocyanines.
- Full Text:
- Date Issued: 2014
- Authors: Britton, Jonathan
- Date: 2014
- Subjects: Phthalocyanines Photochemistry Nanoparticles Nanostructured materials Polymers Quantum dots
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4464 , http://hdl.handle.net/10962/d1011608
- Description: This thesis presents the study of the effects of CdTe-TGA quantum dots (QDs) on optical limiting ability of different phthalocyanine (Pc) complexes (5-12) containing Zn, Ga, In central metals and substituted with benzyloxyphenoxy, phenoxy, tertbutylphenoxy and amino groups in solution and in poly (methyl methacrylate) (PMMA) films. The optical limiting parameters of Pcs were higher for tertbutylphenoxy when compared to benzyloxyphenoxy and phenoxy substituents, in DMSO. Non-peripheral substitution decreased the optical limiting parameters. Third-order susceptibility (Im[χ⁽³⁾]/α) values of Pcs in the absence and presence of CdTe QDs were in the 10⁻¹² to 10⁻¹° esu cm range. Hyperpolarizabilities (γ) ranged from 10⁻³¹ to 10⁻²⁹ esu L for Pc alone or in mixture with QDs. The effect on the optical limiting abilities of twelve embedded phthalocyanines containing In, Ga, Zn and Al as central metals in polymer thin films was also examined. The effect of forming a covalent link zinc tetraamino phthalocyanine (12) with poly (methyl acrylic acid) (PMAA) and Zn (13) and OHAl (14) octacarboxy phthalocyanines to polyethylenimine (PEI) was also studied. The hyperpolarizability of the twelve phthalocyanines in polymer was found to be in the range of 10⁻²⁶ to 10⁻²⁴ esu.L. This is significantly higher than the hyperpolarizabilities of these phthalocyanines in solution. Non-linear optical (NLO) parameters were determined for phthalocyanine complexes containing In, Ga and Zn as central metals when embedded in PMMA polymer in the presence of quantum dots (QDs). The QDs mainly employed were CdTe-TGA (TGA = thioglylcolic acid). Triplet lifetimes increased as k (excited state (σex) to ground state (σg) absorption cross section ratio) values decreased with the addition of the CdTe-TGA to the phthalocyanines. The saturation energy density (Fsat) values were smaller in the films when compared to the solutions. Complex 7 tetrasubstituted with tert-butylphenoxy groups at non-peripheral positions was also studied in the presence of CdS-TGA, CdSe-TGA, fullerenes and single walled carbon nanotubes. There is a general improvement in optical limiting ability of Pc complexes in the presence of nanomaterials (NMs). Degradation studies seem to indicate that placing a phthalocyanine within a polymer thin film may protect it slightly from photo- and thermal degradation. 3(4), 15(16)-Bis-(4 -tert-butyl-phenoxy)-10, 22-diaminohemiporphyrazinato chloroindium hemiporphyrazine was synthesized from 1, 3, 5-triaminobenzene and 4-tert-butyl-phenoxyisoindoline. The structure of the complex was confirmed using mass, nuclear magnetic resonance and infrared spectroscopies. The nonlinear parameters of the compound was also analyzed in dimethylformamide and found to be significantly greater than previously analyzed phthalocyanines.
- Full Text:
- Date Issued: 2014
Photophysical studies of zinc and indium tetraaminophthalocyanines in the presence of CdTe quantum dots
- Authors: Britton, Jonathan
- Date: 2010
- Subjects: Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4332 , http://hdl.handle.net/10962/d1004993 , Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Description: CdTe QDs capped with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) were covalently linked to zinc and indium tetraaminophthalocyanines (TAPcs) using N-ethyl-N(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) as the coupling agents. The results presented give evidence in favour of formation of an amide bond between the MTAPc and CdTe QDs. Both the linked ZnTAPc–QD complexes and the mixture of QDs and ZnTAPc (without chemical linking) showed Förster resonance energy transfer (FRET), though the linked showed less FRET, whereas the QD interactions with InTAPc yielded no evidence of FRET. Both MTAPcs quenched the QDs emission, with quenching constants of the order of 103–104M−1, binding constants of the order of 108-1010M-1 and the number of binding sites for the MTAPc upon the QD being 2. High energy transfer efficiencies were obtained (in some cases as high as 93%), due to the low donor to acceptor distances. Lastly, both MTAPc were shown to be poor optical limiters because their imaginary third-order susceptibility (Im[χ(3)]) was of the order of 10-17-10-16 (optimal range is 10-9-10-11), the hyperpolarizability (γ) of the order of 10-37-10-36 (optimal range is 10-29-10-34) and the k values were above one but below ten.
- Full Text:
- Date Issued: 2010
- Authors: Britton, Jonathan
- Date: 2010
- Subjects: Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4332 , http://hdl.handle.net/10962/d1004993 , Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Description: CdTe QDs capped with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) were covalently linked to zinc and indium tetraaminophthalocyanines (TAPcs) using N-ethyl-N(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) as the coupling agents. The results presented give evidence in favour of formation of an amide bond between the MTAPc and CdTe QDs. Both the linked ZnTAPc–QD complexes and the mixture of QDs and ZnTAPc (without chemical linking) showed Förster resonance energy transfer (FRET), though the linked showed less FRET, whereas the QD interactions with InTAPc yielded no evidence of FRET. Both MTAPcs quenched the QDs emission, with quenching constants of the order of 103–104M−1, binding constants of the order of 108-1010M-1 and the number of binding sites for the MTAPc upon the QD being 2. High energy transfer efficiencies were obtained (in some cases as high as 93%), due to the low donor to acceptor distances. Lastly, both MTAPc were shown to be poor optical limiters because their imaginary third-order susceptibility (Im[χ(3)]) was of the order of 10-17-10-16 (optimal range is 10-9-10-11), the hyperpolarizability (γ) of the order of 10-37-10-36 (optimal range is 10-29-10-34) and the k values were above one but below ten.
- Full Text:
- Date Issued: 2010
The photodynamic therapeutic activities and optical limiting properties of metalated asymmetric porphyrins and corroles
- Authors: Burgess, Kristen Paige
- Date: 2023-10-13
- Subjects: Porphyrins , Corrole , Photochemotherapy , Anti-infective agents , Nonlinear optics , Z-scan technique , Active oxygen , Time-dependent density functional theory , Chemical synthesis
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424490 , vital:72158
- Description: Cancer is a devastating disease that is a leading cause of death worldwide. Despite the available cancer treatments, there is a significant need to improve the therapeutic approach towards this disease. Photodynamic therapy (PDT) is an alternative approach for treating cancer, which requires a photosensitiser, molecular oxygen and light. Although some porphyrin-based derivatives have been approved by the United States Food and Drug Administration (FDA) and other similar agencies elsewhere for photodynamic therapy, their relatively poor photophysicochemical properties mean that there is an ongoing need for new photosensitiser dyes. Singlet oxygen photosensitiser dyes can also be used to treat bacteria that develop antimicrobial resistance in the context of photodynamic antimicrobial chemotherapy (PACT). The main aim of this study was to synthesise and characterise a series of porphyrin dyes with 4-quinolinyl, thien-2-yl and 4-bromo-thien-2-yl meso-aryl groups and their Sn(IV) and In(III) complexes, as well as their corrole analogues. Corroles are contracted macrocycles that have interesting optical properties. The corroles selected for study were found to be difficult to synthesise and purify and had unfavourable photophysicochemical properties and were thus omitted from the PDT and PACT biological applications within this thesis. High- and low-symmetry A4 and ABAB type meso-tetraarylporphyrins porphyrins were synthesised to improve the photophysicochemical properties of the photosensitisers; the utility of these dyes as photosensitisers was studied against the MCF-7 breast cancer cell line for PDT and against Staphylococcus aureus and Escherichia coli for PACT. The thienyl-2-yl rings were introduced to red shift the lowest energy Q band towards the phototherapeutic window, while quaternisation of the nitrogen and sulfur atoms of the 4-quinolinyl and thien-2-yl rings to introduce a cationic nature was explored to improve the bioavailability of the drugs and uptake into the target cell walls for improved efficacy. Heavy Sn(IV) and In(III) central metal ions were introduced to enhance the singlet oxygen quantum yields and limit aggregation through axial ligation. The bromine atoms of the 4-bromo-thien-2-yl meso-aryl rings were also introduced to enhance the singlet oxygen quantum yields of the dyes. Furthermore, the utility of the porphyrin and corrole molecules for optical limiting properties to limit laser radiation to protect optical devices, including eyes, was explored by the z-scan technique. One of the dyes studied, Sn(IV) tetrathien-2-ylporphyrin, that exhibited the most favourable reverse saturable absorbance (RSA) response was embedded into a poly(bisphenol carbonate A) polymer thin film to further explore its suitability for practical applications. , Thesis (MSc) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Burgess, Kristen Paige
- Date: 2023-10-13
- Subjects: Porphyrins , Corrole , Photochemotherapy , Anti-infective agents , Nonlinear optics , Z-scan technique , Active oxygen , Time-dependent density functional theory , Chemical synthesis
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424490 , vital:72158
- Description: Cancer is a devastating disease that is a leading cause of death worldwide. Despite the available cancer treatments, there is a significant need to improve the therapeutic approach towards this disease. Photodynamic therapy (PDT) is an alternative approach for treating cancer, which requires a photosensitiser, molecular oxygen and light. Although some porphyrin-based derivatives have been approved by the United States Food and Drug Administration (FDA) and other similar agencies elsewhere for photodynamic therapy, their relatively poor photophysicochemical properties mean that there is an ongoing need for new photosensitiser dyes. Singlet oxygen photosensitiser dyes can also be used to treat bacteria that develop antimicrobial resistance in the context of photodynamic antimicrobial chemotherapy (PACT). The main aim of this study was to synthesise and characterise a series of porphyrin dyes with 4-quinolinyl, thien-2-yl and 4-bromo-thien-2-yl meso-aryl groups and their Sn(IV) and In(III) complexes, as well as their corrole analogues. Corroles are contracted macrocycles that have interesting optical properties. The corroles selected for study were found to be difficult to synthesise and purify and had unfavourable photophysicochemical properties and were thus omitted from the PDT and PACT biological applications within this thesis. High- and low-symmetry A4 and ABAB type meso-tetraarylporphyrins porphyrins were synthesised to improve the photophysicochemical properties of the photosensitisers; the utility of these dyes as photosensitisers was studied against the MCF-7 breast cancer cell line for PDT and against Staphylococcus aureus and Escherichia coli for PACT. The thienyl-2-yl rings were introduced to red shift the lowest energy Q band towards the phototherapeutic window, while quaternisation of the nitrogen and sulfur atoms of the 4-quinolinyl and thien-2-yl rings to introduce a cationic nature was explored to improve the bioavailability of the drugs and uptake into the target cell walls for improved efficacy. Heavy Sn(IV) and In(III) central metal ions were introduced to enhance the singlet oxygen quantum yields and limit aggregation through axial ligation. The bromine atoms of the 4-bromo-thien-2-yl meso-aryl rings were also introduced to enhance the singlet oxygen quantum yields of the dyes. Furthermore, the utility of the porphyrin and corrole molecules for optical limiting properties to limit laser radiation to protect optical devices, including eyes, was explored by the z-scan technique. One of the dyes studied, Sn(IV) tetrathien-2-ylporphyrin, that exhibited the most favourable reverse saturable absorbance (RSA) response was embedded into a poly(bisphenol carbonate A) polymer thin film to further explore its suitability for practical applications. , Thesis (MSc) -- Faculty of Science, Chemistry, 2023
- Full Text:
- Date Issued: 2023-10-13
Substituent effects on the electrocatalytic activity of cobalt phthalocyanine in the presence of graphene quantum dots
- Centane, Sixolile Sibongiseni
- Authors: Centane, Sixolile Sibongiseni
- Date: 2019
- Subjects: Phthalocyanines , Quantum dots , Electrocatalysis , Electrochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67614 , vital:29121
- Description: The electrocatalytic activity of metallophthalocyanines derivatives is explored. Cobalt monocarboxyphenoxy phthalocyanine (1), cobalt tetracarboxyphenoxy phthalocyanine (2), cobalt tetraaminophenoxy phthalocyanine (3) and cobalt tris-(tert-butylphenoxy) monocarboxyphenoxy phthalocyanine (4) are the phthalocyanines employed in this work. The metallophthalocyanines were employed alone as well as in the presence of the carbon based graphene quantum dots. The electrocatalytic behaviour of functionalized GQDs is also explored herein. The catalytic processes studies were conducted on a glassy carbon electrode surface. Modification of the electrode was achieved by the adsorption method. The materials were adsorbed either alone, as premixed/covalently linked GQDs/Pc conjugates or sequentially. Sequentially adsorbed electrodes involved the phthalocyanines on top or beneath GQDs. Sequentially modified electrodes where the phthalocyanine had higher currents and low detection limits than when the phthalocyanine is underneath. Premixed conjugates showed better activity than the covalently formed conjugates. The nanomaterials synthesized and used in this work were characterized using transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, Raman spectroscopy, X-ray diffraction, Atomic Force Microscopy and X-ray photoelectron spectroscopy. The modified electrodes were characterized using cyclic voltammetry and scanning electrochemical spectroscopy. The electrocatalytic activity of the modified electrodes towards the oxidation of hydrazine was evaluated using cyclic voltammetry and chronoamperometry. Superior catalytic activity was observed for the conjugates compared to that of the individual conjugates.
- Full Text:
- Date Issued: 2019
- Authors: Centane, Sixolile Sibongiseni
- Date: 2019
- Subjects: Phthalocyanines , Quantum dots , Electrocatalysis , Electrochemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67614 , vital:29121
- Description: The electrocatalytic activity of metallophthalocyanines derivatives is explored. Cobalt monocarboxyphenoxy phthalocyanine (1), cobalt tetracarboxyphenoxy phthalocyanine (2), cobalt tetraaminophenoxy phthalocyanine (3) and cobalt tris-(tert-butylphenoxy) monocarboxyphenoxy phthalocyanine (4) are the phthalocyanines employed in this work. The metallophthalocyanines were employed alone as well as in the presence of the carbon based graphene quantum dots. The electrocatalytic behaviour of functionalized GQDs is also explored herein. The catalytic processes studies were conducted on a glassy carbon electrode surface. Modification of the electrode was achieved by the adsorption method. The materials were adsorbed either alone, as premixed/covalently linked GQDs/Pc conjugates or sequentially. Sequentially adsorbed electrodes involved the phthalocyanines on top or beneath GQDs. Sequentially modified electrodes where the phthalocyanine had higher currents and low detection limits than when the phthalocyanine is underneath. Premixed conjugates showed better activity than the covalently formed conjugates. The nanomaterials synthesized and used in this work were characterized using transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, Raman spectroscopy, X-ray diffraction, Atomic Force Microscopy and X-ray photoelectron spectroscopy. The modified electrodes were characterized using cyclic voltammetry and scanning electrochemical spectroscopy. The electrocatalytic activity of the modified electrodes towards the oxidation of hydrazine was evaluated using cyclic voltammetry and chronoamperometry. Superior catalytic activity was observed for the conjugates compared to that of the individual conjugates.
- Full Text:
- Date Issued: 2019
Synthesis, photochemical and photophysical properties of gallium and indium phthalocyanine derivatives
- Authors: Chauke, Vongani Portia
- Date: 2008
- Subjects: Phthalocyanines , Photochemotherapy , Electrochemistry , Gallium , Indium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4375 , http://hdl.handle.net/10962/d1005040 , Phthalocyanines , Photochemotherapy , Electrochemistry , Gallium , Indium
- Description: The syntheses of octasubstituted and unsusbstitituted Gallium(III) chloride and indium(III) chloride phthalocyanines (GaPc and InPc), their photophysical, photochemical and nonlinear optical parameters are hereby presented. The photocatalytic oxidation of 1-hexene using the synthesized GaPc and InPc complexes as well as electrochemical characterization is also presented in this thesis. Fluorescence quantum yields do not vary much among the four Ga complexes, except for complex 21c; therefore it was concluded that the effect of substituents is not significant among them. Solvents however, had an effect on the results. Lower Φ[subscript F] values were obtained in low viscosity solvents like toluene, relative to highly viscous solvents, such as DMSO. The triplet quantum yields were found to be lower in DMSO than in DMF and toluene. The rate constants for fluorescence, intersystem crossing and internal conversion as well as fluorescence and triplet lifetimes are reported. Photodegradation and singlet oxygen quantum yields have also been reported. There was no clear correlation between the latter parameters. It was however established that the four gallium MPcs were stable, within the allowed stability range for phthalocyanines. High quantum yields of triplet state (Φ[subscript T] ranging from 0.70 to 0.91 in dimethysulfoxide, DMSO) and singlet oxygen generation (Φ[subscript greek capital letter delta], ranging from 0.61 to 0.79 in DMSO) were obtained. Short triplet lifetimes 50 to 60 μs were obtained in DMSO). Calculated non-linear parameters of these complexes are compared with those of the corresponding GaPc derivatives and tetrasubstituted GaPc and InPc complexes. The optical limiting threshold intensity (I[subscript lim]) values for the InPc and GaPc derivatives were calculated and compared with those of corresponding tetrasubstituted InPc and GaPc complexes. The octasubstituted were found to be better optical limiters. Photocatalytic oxidation of 1-hexene by GaPc (21a-c) and InPc (22a-c) derivatives is also presented. The photocatalytic oxidation products for 1-hexene were 1,2- epoxyhexane and 1-hexen-3-ol. The % conversion values of 1-hexene and % selectivity of 1,2-epoxyhexane were generally higher for InPc derivatives. Even though InPc derivatives showed better photocatalytic results than GaPc derivatives, the former were less stable relative to the latter. Both type I and type II mechanism were implicated in the photocatalysis mechanism.
- Full Text:
- Date Issued: 2008
- Authors: Chauke, Vongani Portia
- Date: 2008
- Subjects: Phthalocyanines , Photochemotherapy , Electrochemistry , Gallium , Indium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4375 , http://hdl.handle.net/10962/d1005040 , Phthalocyanines , Photochemotherapy , Electrochemistry , Gallium , Indium
- Description: The syntheses of octasubstituted and unsusbstitituted Gallium(III) chloride and indium(III) chloride phthalocyanines (GaPc and InPc), their photophysical, photochemical and nonlinear optical parameters are hereby presented. The photocatalytic oxidation of 1-hexene using the synthesized GaPc and InPc complexes as well as electrochemical characterization is also presented in this thesis. Fluorescence quantum yields do not vary much among the four Ga complexes, except for complex 21c; therefore it was concluded that the effect of substituents is not significant among them. Solvents however, had an effect on the results. Lower Φ[subscript F] values were obtained in low viscosity solvents like toluene, relative to highly viscous solvents, such as DMSO. The triplet quantum yields were found to be lower in DMSO than in DMF and toluene. The rate constants for fluorescence, intersystem crossing and internal conversion as well as fluorescence and triplet lifetimes are reported. Photodegradation and singlet oxygen quantum yields have also been reported. There was no clear correlation between the latter parameters. It was however established that the four gallium MPcs were stable, within the allowed stability range for phthalocyanines. High quantum yields of triplet state (Φ[subscript T] ranging from 0.70 to 0.91 in dimethysulfoxide, DMSO) and singlet oxygen generation (Φ[subscript greek capital letter delta], ranging from 0.61 to 0.79 in DMSO) were obtained. Short triplet lifetimes 50 to 60 μs were obtained in DMSO). Calculated non-linear parameters of these complexes are compared with those of the corresponding GaPc derivatives and tetrasubstituted GaPc and InPc complexes. The optical limiting threshold intensity (I[subscript lim]) values for the InPc and GaPc derivatives were calculated and compared with those of corresponding tetrasubstituted InPc and GaPc complexes. The octasubstituted were found to be better optical limiters. Photocatalytic oxidation of 1-hexene by GaPc (21a-c) and InPc (22a-c) derivatives is also presented. The photocatalytic oxidation products for 1-hexene were 1,2- epoxyhexane and 1-hexen-3-ol. The % conversion values of 1-hexene and % selectivity of 1,2-epoxyhexane were generally higher for InPc derivatives. Even though InPc derivatives showed better photocatalytic results than GaPc derivatives, the former were less stable relative to the latter. Both type I and type II mechanism were implicated in the photocatalysis mechanism.
- Full Text:
- Date Issued: 2008
Electrochemistry and photophysicochemical studies of titanium, tantalum and vanadium phthalocyanines in the presence of nanomaterials
- Authors: Chauke, Vongani Portia
- Date: 2012
- Subjects: Phthalocyanines -- Synthesis Electrochemistry Titanium Tantalum Vanadium
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4313 , http://hdl.handle.net/10962/d1004971
- Description: The syntheses of tetra- and octa-substituted phthalocyanine complexes of titanium (IV) oxide vanadium (IV) oxide and tantalum (V) hydroxide and their electrochemical characterisation are presented in this work. The structures and purity of these complexes were confirmed by NMR, infrared and mass spectroscopies and elemental analysis. They show good solubility in most common solvents especially non-viscous solvents such as dichloromethane and chloroform. The cyclic voltammograms (CV) showed reversible to quasi reversible behavior for all the reduction couples and the oxidation peaks were irreversible. Spectroelectrochemistry of the complexes confirmed metal and ring redox processes for TaPc and TiPc derivatives and ring based processes only for VPc complexes. The synthesis of gold nanoparticles and their conjugation with the new phthalocyanines was carried out. Similarly, single walled carbon nanotubes were conjugated to selected tantalum complexes and the characterization of all the nanomaterials and their conjugates using different techniques that include TEM, XRD and AFM is also presented in this work. The photophysical and photochemical properties and photocatalytic oxidation of cyclohexene properties of the newly synthesised in the presence of gold nanoparticles were investigated. The compounds were stable, well within the stability range for phthalocyanines. The singlet oxygen quantum yield values increased drastically in the presence of gold nanoparticles. The photocatalytic products obtained from the reaction were cyclohexene oxide, 2-cyclohexen-1-ol, 2-cyclohexene-1-one and 1,4-cyclohexanediol. The percentage conversion values, yields and selectivity values improved significantly in the presence of AuNPs. Singlet oxygen was determined to be the main agent involved in the photocatalytic oxidation of cyclohexene. The electrocatalytic oxidation of bisphenol A and p-nitrophenol was carried out using nickel tetraamino phthalocyanine and all the newly synthesised metallophthalocyanine in the presence of gold nanoparticles and single walled carbon nanotubes. The charge transfer behaviour of AuNPs was enhanced in the presence of TaPc, TiPc and VPc complexes. The presence of single walled carbon nanotubes further improved electron transfer and minimised electrode passivation.
- Full Text:
- Date Issued: 2012
- Authors: Chauke, Vongani Portia
- Date: 2012
- Subjects: Phthalocyanines -- Synthesis Electrochemistry Titanium Tantalum Vanadium
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4313 , http://hdl.handle.net/10962/d1004971
- Description: The syntheses of tetra- and octa-substituted phthalocyanine complexes of titanium (IV) oxide vanadium (IV) oxide and tantalum (V) hydroxide and their electrochemical characterisation are presented in this work. The structures and purity of these complexes were confirmed by NMR, infrared and mass spectroscopies and elemental analysis. They show good solubility in most common solvents especially non-viscous solvents such as dichloromethane and chloroform. The cyclic voltammograms (CV) showed reversible to quasi reversible behavior for all the reduction couples and the oxidation peaks were irreversible. Spectroelectrochemistry of the complexes confirmed metal and ring redox processes for TaPc and TiPc derivatives and ring based processes only for VPc complexes. The synthesis of gold nanoparticles and their conjugation with the new phthalocyanines was carried out. Similarly, single walled carbon nanotubes were conjugated to selected tantalum complexes and the characterization of all the nanomaterials and their conjugates using different techniques that include TEM, XRD and AFM is also presented in this work. The photophysical and photochemical properties and photocatalytic oxidation of cyclohexene properties of the newly synthesised in the presence of gold nanoparticles were investigated. The compounds were stable, well within the stability range for phthalocyanines. The singlet oxygen quantum yield values increased drastically in the presence of gold nanoparticles. The photocatalytic products obtained from the reaction were cyclohexene oxide, 2-cyclohexen-1-ol, 2-cyclohexene-1-one and 1,4-cyclohexanediol. The percentage conversion values, yields and selectivity values improved significantly in the presence of AuNPs. Singlet oxygen was determined to be the main agent involved in the photocatalytic oxidation of cyclohexene. The electrocatalytic oxidation of bisphenol A and p-nitrophenol was carried out using nickel tetraamino phthalocyanine and all the newly synthesised metallophthalocyanine in the presence of gold nanoparticles and single walled carbon nanotubes. The charge transfer behaviour of AuNPs was enhanced in the presence of TaPc, TiPc and VPc complexes. The presence of single walled carbon nanotubes further improved electron transfer and minimised electrode passivation.
- Full Text:
- Date Issued: 2012
Photophysiochemical studies of d¹⁰ metallophthalocyanines and their interaction with nanoparticles
- Chidawanyika, Wadzanai Janet Upenyu
- Authors: Chidawanyika, Wadzanai Janet Upenyu
- Date: 2010
- Subjects: Nanoparticles Phthalocyanines Photochemistry Electrochemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4335 , http://hdl.handle.net/10962/d1004996
- Description: The syntheses, extensive spectroscopic characterization, photophysical and photochemical studies have been conducted for a variation of d10 metallophthaloycanines (MPcs). Comparisons have been made taking into consideration the nfluence of the central metal ion, solvent properties, substituent type and position. Coordination to heavy central metals i.e. Hg gives enhanced triplet state properties. Low symmetry metallophthalocyanine complexes were similarly haracterized and the influence of nteractions with nanoparticles on their photophysical and photochemical properties determined. The MPcs have been linked and adsorbed or mixed with nanoparticles i.e. hemically functionalized single-walled carbon nanotubes SWCNT) and mercaptocarboxylic acid capped CdTe quantum dots (QDs) and changes in the spectra accounted for with respect to the proposed conjugate structures. Distinct differences ccur for linked and adsorbed or mixed conjugates in the bsorption, infrared (IR) and Raman spectra and for thermal ravimetric decay profiles, suggesting successful formation f covalent bonds (linked) and point to structurally ifferent materials. SWCNT quench MPc fluorescence by a photoinduced electron transfer mediated process to give low fluorescence quantum yields. The QDs were used as energy transfer donors and facilitate energy transfer, through Förster resonance energy transfer (FRET) from the QDs to the MPcs. Improved FRET efficiencies were found for linked MPc-QD conjugates relative to the mixed species. Photophysicochemical properties of MPcs were, in general, improved as a result of interactions with nanoparticles.
- Full Text:
- Date Issued: 2010
- Authors: Chidawanyika, Wadzanai Janet Upenyu
- Date: 2010
- Subjects: Nanoparticles Phthalocyanines Photochemistry Electrochemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4335 , http://hdl.handle.net/10962/d1004996
- Description: The syntheses, extensive spectroscopic characterization, photophysical and photochemical studies have been conducted for a variation of d10 metallophthaloycanines (MPcs). Comparisons have been made taking into consideration the nfluence of the central metal ion, solvent properties, substituent type and position. Coordination to heavy central metals i.e. Hg gives enhanced triplet state properties. Low symmetry metallophthalocyanine complexes were similarly haracterized and the influence of nteractions with nanoparticles on their photophysical and photochemical properties determined. The MPcs have been linked and adsorbed or mixed with nanoparticles i.e. hemically functionalized single-walled carbon nanotubes SWCNT) and mercaptocarboxylic acid capped CdTe quantum dots (QDs) and changes in the spectra accounted for with respect to the proposed conjugate structures. Distinct differences ccur for linked and adsorbed or mixed conjugates in the bsorption, infrared (IR) and Raman spectra and for thermal ravimetric decay profiles, suggesting successful formation f covalent bonds (linked) and point to structurally ifferent materials. SWCNT quench MPc fluorescence by a photoinduced electron transfer mediated process to give low fluorescence quantum yields. The QDs were used as energy transfer donors and facilitate energy transfer, through Förster resonance energy transfer (FRET) from the QDs to the MPcs. Improved FRET efficiencies were found for linked MPc-QD conjugates relative to the mixed species. Photophysicochemical properties of MPcs were, in general, improved as a result of interactions with nanoparticles.
- Full Text:
- Date Issued: 2010
Photodynamic anticancer and antimicrobial activities of π-extended BODIPY dyes and cationic mitochondria-targeted porphyrins
- Authors: Chiyumba, Choonzo Nachoobe
- Date: 2022-10-14
- Subjects: Dyes and dyeing Chemistry , Mitochondria , Cancer Chemotherapy , Porphyrins , Molecules Models , Photochemotherapy
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362785 , vital:65362
- Description: Cancer is among the most devastating diseases and is mainly caused by gene mutation. This could be hereditary, or the mutation could be stimulated due to a lifestyle one lives, such as smoking, which induces lung cancer. The high morbidity rates of cancer are attributed to it being metastatic. The relatively poor physicochemical properties of existing drugs have caused treatment to be ineffective. Photofrin®, Foscan®, and Photogem® are some of the porphyrin-based derivatives approved by the Food and Drug Administration (FDA) for use in photodynamic therapy (PDT). Despite having such drugs, the quest to find better cancer drugs is still ongoing and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes are among the molecules that are being studied as potential photosensitisers (PS) in PDT. However, these molecules suffer from poor solubility and ineffective generation of singlet oxygen, the main ingredient in PDT treatment. Furthermore, photosensitisers used in PDT face a problem with hypoxic conditions associated with cancer cells, which causes the generation of singlet oxygen to be relatively low. The PS also suffer from the untargeted treatment, increasing their toxicity. Therefore, the main aim of this study was to improve the bioavailability of BODIPY dyes. Thus, a series of BODPIY dyes were synthesised with hydrogen bond accepting atoms and heavy atoms that enhance singlet oxygen generation. Additionally, to override hypoxia conditions, porphyrins with mitochondria targeting properties were synthesised since it has been well established that the mitochondria will always have a decent amount of oxygen in cancerous cells. When employed as PS in PDT studies, these molecules have better cytotoxic abilities than BODIPY dyes, and this potency was credited to their mitochondria targeting ability and efficient singlet oxygen generation. Finally, this study reports the synthesis of di- and mono-substituted BODIPY dyes with improved solubility and porphyrins substituted with triphenyl phosphine, a mitochondria targeting moiety. On the other hand, the work further illustrates the synthesis of β-substituted cationic porphyrin with mitochondria targeting properties. , Thesis (MSc) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Chiyumba, Choonzo Nachoobe
- Date: 2022-10-14
- Subjects: Dyes and dyeing Chemistry , Mitochondria , Cancer Chemotherapy , Porphyrins , Molecules Models , Photochemotherapy
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362785 , vital:65362
- Description: Cancer is among the most devastating diseases and is mainly caused by gene mutation. This could be hereditary, or the mutation could be stimulated due to a lifestyle one lives, such as smoking, which induces lung cancer. The high morbidity rates of cancer are attributed to it being metastatic. The relatively poor physicochemical properties of existing drugs have caused treatment to be ineffective. Photofrin®, Foscan®, and Photogem® are some of the porphyrin-based derivatives approved by the Food and Drug Administration (FDA) for use in photodynamic therapy (PDT). Despite having such drugs, the quest to find better cancer drugs is still ongoing and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes are among the molecules that are being studied as potential photosensitisers (PS) in PDT. However, these molecules suffer from poor solubility and ineffective generation of singlet oxygen, the main ingredient in PDT treatment. Furthermore, photosensitisers used in PDT face a problem with hypoxic conditions associated with cancer cells, which causes the generation of singlet oxygen to be relatively low. The PS also suffer from the untargeted treatment, increasing their toxicity. Therefore, the main aim of this study was to improve the bioavailability of BODIPY dyes. Thus, a series of BODPIY dyes were synthesised with hydrogen bond accepting atoms and heavy atoms that enhance singlet oxygen generation. Additionally, to override hypoxia conditions, porphyrins with mitochondria targeting properties were synthesised since it has been well established that the mitochondria will always have a decent amount of oxygen in cancerous cells. When employed as PS in PDT studies, these molecules have better cytotoxic abilities than BODIPY dyes, and this potency was credited to their mitochondria targeting ability and efficient singlet oxygen generation. Finally, this study reports the synthesis of di- and mono-substituted BODIPY dyes with improved solubility and porphyrins substituted with triphenyl phosphine, a mitochondria targeting moiety. On the other hand, the work further illustrates the synthesis of β-substituted cationic porphyrin with mitochondria targeting properties. , Thesis (MSc) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-10-14
Characterisation of surfaces modified through self-assembled monolayers and click chemistry
- Authors: Coates, Megan Patricia
- Date: 2013
- Subjects: Monomolecular films Gold Adsorption Nanotubes Self-assembly (Chemistry) Self-assembly (Chemistry) Scanning electrochemical microscopy X-ray photoelectron spectroscopy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4277 , http://hdl.handle.net/10962/d1001684
- Description: Different approaches to surface modification were investigated in this work on gold, glassy carbon, multi-walled carbon nanotube paper and on single-walled carbon nanotubes adsorbed on glassy carbon. These approaches include electrochemical grafting, electropolymerisation, click chemistry, axial ligation, adsorption and self-assembled monolayers. The modified surfaces were characterised using a variety of techniques; predominantly electrochemistry, scanning electrochemical microscopy and X-ray photoelectron spectroscopy. For the formation of self-assembled monolayers on gold, four new manganese(III) phthalocyanines (1a-d), octa-substituted at the peripheral position with pentylthio, decylthio, benzylthio, and phenylthio groups were synthesized and characterised. X-ray photoelectron spectroscopy was used to show the formation of a sulphur-gold bond. A number of approaches using 4-azidoaniline (2a) combined with azide-alkyne click chemistry and electrochemistry were also used to anchor ferrocene and pyridine moieties on to the carbon surfaces, including direct in situ diazotation and grafting, electropolymerisation, and the synthesis of the diazonium salt followed by grafting. Iron phthalocyanine was linked to the pyridine-clicked surfaces through axial ligation, where the strong axial bond formed by the interaction between the central metal and the lone pair of the nitrogen in the pyridine group resulted in stable modified electrodes. The potential of these surfaces for the detection of analytes such as thiocyanate, hydrazine and sulphite are briefly shown as well. This work also describes for the first time the possibility of performing local micro-electrochemical grafting of a gold substrate by 4-azidobenzenediazonium (2b) using scanning electrochemical microscopy in a single and simple one step approach, without complications from adsorption.
- Full Text:
- Date Issued: 2013
- Authors: Coates, Megan Patricia
- Date: 2013
- Subjects: Monomolecular films Gold Adsorption Nanotubes Self-assembly (Chemistry) Self-assembly (Chemistry) Scanning electrochemical microscopy X-ray photoelectron spectroscopy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4277 , http://hdl.handle.net/10962/d1001684
- Description: Different approaches to surface modification were investigated in this work on gold, glassy carbon, multi-walled carbon nanotube paper and on single-walled carbon nanotubes adsorbed on glassy carbon. These approaches include electrochemical grafting, electropolymerisation, click chemistry, axial ligation, adsorption and self-assembled monolayers. The modified surfaces were characterised using a variety of techniques; predominantly electrochemistry, scanning electrochemical microscopy and X-ray photoelectron spectroscopy. For the formation of self-assembled monolayers on gold, four new manganese(III) phthalocyanines (1a-d), octa-substituted at the peripheral position with pentylthio, decylthio, benzylthio, and phenylthio groups were synthesized and characterised. X-ray photoelectron spectroscopy was used to show the formation of a sulphur-gold bond. A number of approaches using 4-azidoaniline (2a) combined with azide-alkyne click chemistry and electrochemistry were also used to anchor ferrocene and pyridine moieties on to the carbon surfaces, including direct in situ diazotation and grafting, electropolymerisation, and the synthesis of the diazonium salt followed by grafting. Iron phthalocyanine was linked to the pyridine-clicked surfaces through axial ligation, where the strong axial bond formed by the interaction between the central metal and the lone pair of the nitrogen in the pyridine group resulted in stable modified electrodes. The potential of these surfaces for the detection of analytes such as thiocyanate, hydrazine and sulphite are briefly shown as well. This work also describes for the first time the possibility of performing local micro-electrochemical grafting of a gold substrate by 4-azidobenzenediazonium (2b) using scanning electrochemical microscopy in a single and simple one step approach, without complications from adsorption.
- Full Text:
- Date Issued: 2013
The photophysical properties of low symmetry phthalocyanines in conjunction with quantum dots
- Authors: D'Souza, Sarah
- Date: 2011
- Subjects: Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4331 , http://hdl.handle.net/10962/d1004992 , Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Description: he synthesis, extensive spectroscopic characterization and photophysical studies of low symmetry zinc phthalocyanine have been conducted. Comparisons have been made taking into consideration the influence of the solvent properties as well as substituent type and position. Photosensitizing properties of the zinc phthalocyanine derivatives in the presence of thiol capped CdTe quantum dots (QDs) were compared. The QDs were used as energy transfer donors and to facilitate with energy transfer through Förster resonance energy transfer (FRET) from the QDs to the MPcs. The linkage of unsymmetrically substituted 4-monoaminophenoxy zinc phthalocyanine (ZnAPPc) to CdTe quantum dots capped with mercaptopropionic acid (MPA), L-cysteine (L-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N3 dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS), which facilitate formation of an amide bond to form the QD-ZnAPPc-linked complex. The formation of the amide bond was confirmed using UV-Vis, Raman and IR spectroscopies, as well as AFM (atomic force microscopy). Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QDZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates for MPA only. The linked L-cys and TGA complexes (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked. High triplet state quantum yields were obtained for the linked QD-phthalocyanine derivatives (ZnAPPc)and monoaminozinc phthalocyanine (ZnAPc) compared to when ZnAPPc and ZnAPc were mixed with MPA QDs without a chemical bond.
- Full Text:
- Date Issued: 2011
- Authors: D'Souza, Sarah
- Date: 2011
- Subjects: Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4331 , http://hdl.handle.net/10962/d1004992 , Phthalocyanines , Photochemistry , Zinc , Quantum dots , Spectrum analysis , Nanoparticles
- Description: he synthesis, extensive spectroscopic characterization and photophysical studies of low symmetry zinc phthalocyanine have been conducted. Comparisons have been made taking into consideration the influence of the solvent properties as well as substituent type and position. Photosensitizing properties of the zinc phthalocyanine derivatives in the presence of thiol capped CdTe quantum dots (QDs) were compared. The QDs were used as energy transfer donors and to facilitate with energy transfer through Förster resonance energy transfer (FRET) from the QDs to the MPcs. The linkage of unsymmetrically substituted 4-monoaminophenoxy zinc phthalocyanine (ZnAPPc) to CdTe quantum dots capped with mercaptopropionic acid (MPA), L-cysteine (L-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N3 dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy succinimide (NHS), which facilitate formation of an amide bond to form the QD-ZnAPPc-linked complex. The formation of the amide bond was confirmed using UV-Vis, Raman and IR spectroscopies, as well as AFM (atomic force microscopy). Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QDZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates for MPA only. The linked L-cys and TGA complexes (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked. High triplet state quantum yields were obtained for the linked QD-phthalocyanine derivatives (ZnAPPc)and monoaminozinc phthalocyanine (ZnAPc) compared to when ZnAPPc and ZnAPc were mixed with MPA QDs without a chemical bond.
- Full Text:
- Date Issued: 2011
The effect of shaped nanoparticles on the photophysicochemical behaviour of metallophthalocyanines
- Authors: D'Souza, Sarah
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/529 , vital:19967
- Description: The synthesis, spectroscopic characterization and photophysicochemical analysis of novel and known metallophthalocyanines are reported in this thesis. The novel lowsymmetry compounds were extensively studied. Selected phthalocyanines were conjugated to a variety of nanoparticles consisting of silver (AgNPs), gold (AuNPs) and zinc oxide (ZnO NPs) in order to improve their photophysical and photochemical behaviour. As with the phthalocyanines, the nanoparticles and phthalocyaninenanoparticle conjugates were thoroughly investigated. Research on the effect of the solvent used, as well as the influence of nanoparticle composition and shape on the properties of the phthalocyanines, were performed. The findings showed that there was a general increase in triplet quantum yields of the phthalocyanines in the presence of the nanoparticles. It was also noted that the use of different solvents directly affected the photophysicochemical properties. In the case of the nanoparticle conjugates, photophysical and photochemical changes were observed. Of significance were the gold nanostars, which decreased the degree of phthalocyanine aggregation in water, resulting in increased fluorescence lifetimes. The studies also revealed that the effect of the nanoparticle shape on the phthalocyanine properties was highly dependent on the nanoparticle material. The photodynamic antimicrobial activity of selected phthalocyanine-zinc oxide nanoparticle conjugates was investigated against Staphylococcus aureus (S. aureus) in solution. The phthalocyanines alone exhibited remarkable growth inhibition, however the presence of the nanoparticles in the conjugates increased the photoinactivation of S. aureus.
- Full Text:
- Date Issued: 2016
- Authors: D'Souza, Sarah
- Date: 2016
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/529 , vital:19967
- Description: The synthesis, spectroscopic characterization and photophysicochemical analysis of novel and known metallophthalocyanines are reported in this thesis. The novel lowsymmetry compounds were extensively studied. Selected phthalocyanines were conjugated to a variety of nanoparticles consisting of silver (AgNPs), gold (AuNPs) and zinc oxide (ZnO NPs) in order to improve their photophysical and photochemical behaviour. As with the phthalocyanines, the nanoparticles and phthalocyaninenanoparticle conjugates were thoroughly investigated. Research on the effect of the solvent used, as well as the influence of nanoparticle composition and shape on the properties of the phthalocyanines, were performed. The findings showed that there was a general increase in triplet quantum yields of the phthalocyanines in the presence of the nanoparticles. It was also noted that the use of different solvents directly affected the photophysicochemical properties. In the case of the nanoparticle conjugates, photophysical and photochemical changes were observed. Of significance were the gold nanostars, which decreased the degree of phthalocyanine aggregation in water, resulting in increased fluorescence lifetimes. The studies also revealed that the effect of the nanoparticle shape on the phthalocyanine properties was highly dependent on the nanoparticle material. The photodynamic antimicrobial activity of selected phthalocyanine-zinc oxide nanoparticle conjugates was investigated against Staphylococcus aureus (S. aureus) in solution. The phthalocyanines alone exhibited remarkable growth inhibition, however the presence of the nanoparticles in the conjugates increased the photoinactivation of S. aureus.
- Full Text:
- Date Issued: 2016
Physicochemical properties and photodynamic therapy activities of indium and zinc phthalocyanine-nanoparticle conjugates
- Authors: Dube, Edith
- Date: 2019
- Subjects: Indium , Zinc , Phthalocyanines , Breast -- Cancer -- Photochemotherapy , Nanoparticles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76506 , vital:30589
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position are reported. The Pcs contain either zinc or indium as central metals and have carboxyphenoxy, phenoxy propanoic acid, benzothiazole phenoxy, thiophine ethoxy or di-O-isopropylidene-α-D-glucopyranose as ring substituents. The Pcs were linked to NPs via an amide bond or through self-assembly. The photophysics and photochemistry of the Pcs were assessed when alone and with conjugates. All the studied Pcs showed good photophysicochemical behaviour with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yield. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy–atom effect obtained from the former. Asymmetrical Pcs displayed higher triplet and singlet oxygen quantum yields than their symmetrical counterparts. The triplet quantum yield, generally increased on linkage to nanoparticles (NPs) due to the heavy–atom effect of gold and silver in NPs. The conjugates to gold nanospheres yielded higher triplet and singlet quantum yields than their gold nanotriangles counterparts due to the higher loading by the former probably encouraged by their relatively small particle size. The in vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. All complexes displayed poor phototoxicity with >50Îll viability at concentrations≤ 160μg/mL, however the conjugates showed<50% cell viabilityatconcentrations≤ 160μg/mLprobably due to the enhanced singlet oxygen quantum yield. The findings from this work show the importance of linking photosensitises such as phthalocyanines to metal nanoparticles for the enhancement ofsinglet oxygen quantum yield and ultimately the photodynamic effect.
- Full Text:
- Date Issued: 2019
- Authors: Dube, Edith
- Date: 2019
- Subjects: Indium , Zinc , Phthalocyanines , Breast -- Cancer -- Photochemotherapy , Nanoparticles
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76506 , vital:30589
- Description: The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position are reported. The Pcs contain either zinc or indium as central metals and have carboxyphenoxy, phenoxy propanoic acid, benzothiazole phenoxy, thiophine ethoxy or di-O-isopropylidene-α-D-glucopyranose as ring substituents. The Pcs were linked to NPs via an amide bond or through self-assembly. The photophysics and photochemistry of the Pcs were assessed when alone and with conjugates. All the studied Pcs showed good photophysicochemical behaviour with relatively high triplet and singlet oxygen quantum yields corresponding to their low fluorescence quantum yield. The Pcs with indium in their central cavity exhibited higher triplet and singlet oxygen quantum yields in comparison to their zinc counterparts due to the heavy–atom effect obtained from the former. Asymmetrical Pcs displayed higher triplet and singlet oxygen quantum yields than their symmetrical counterparts. The triplet quantum yield, generally increased on linkage to nanoparticles (NPs) due to the heavy–atom effect of gold and silver in NPs. The conjugates to gold nanospheres yielded higher triplet and singlet quantum yields than their gold nanotriangles counterparts due to the higher loading by the former probably encouraged by their relatively small particle size. The in vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. All complexes displayed poor phototoxicity with >50Îll viability at concentrations≤ 160μg/mL, however the conjugates showed<50% cell viabilityatconcentrations≤ 160μg/mLprobably due to the enhanced singlet oxygen quantum yield. The findings from this work show the importance of linking photosensitises such as phthalocyanines to metal nanoparticles for the enhancement ofsinglet oxygen quantum yield and ultimately the photodynamic effect.
- Full Text:
- Date Issued: 2019
Photophysical studies of Zinc phthalocyanine-silica nanoparticles conjugates
- Authors: Fashina, Adedayo
- Date: 2015
- Subjects: Nanoparticles , Phthalocyanines , Zinc , Silica , Photochemistry , Adsorption
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4537 , http://hdl.handle.net/10962/d1017917
- Description: This thesis reports on the synthesis and characterization of both symmetrical and asymmetrical Zinc phthalocyanine complexes. The complexes contained groups such as carboxylic, amino and alkyne for covalent grafting to the surface of silica nanoparticles. The use of symmetrical and asymmetrical complexes was geared towards comparing the non-specific binding of the symmetrical complexes to the specific binding observed in the asymmetrical complexes. The complexes were also doped within the silica matrix and compared to the surface grafted conjugates. The complexes and the conjugates were well characterized with a variety of techniques. The fluorescence lifetimes of the phthalocyanine complexes containing either terminal carboxylic groups or an alkyne group showed a mono-exponential decay while the amino containing phthalocyanine complexes gave a bi-exponential decay. A similar trend was observed for their respective conjugates. Some of the conjugates of the asymmetrical complexes showed a decrease in fluorescence lifetimes and a corresponding decrease in fluorescence quantum yields. The fluorescence quantum yields for all the symmetrical complexes studied showed either an improvement or retained the luminescence of the grafted phthalocyanine complex. Most of the conjugates showed a faster intersystem crossing time in comparison to the complexes alone. The grafted or doped conjugates containing symmetrical phthalocyanine complexes with carboxyl groups showed improvements both in fluorescence and triplet quantum yields. All the conjugates except two showed an increase in triplet lifetimes when compared to their respective phthalocyanine complexes. Optical nonlinearities of nine of the phthalocyanine complexes were studied and all the complexes showed characteristic reverse saturable absorption behavior. Complex 10 showed the most promising optical limiting behavior. The aggregation and dissolution studies of the conjugates were also carried out in a simulated biological medium and the silicon level detected was noticed to have increased with incubation time.
- Full Text:
- Date Issued: 2015
- Authors: Fashina, Adedayo
- Date: 2015
- Subjects: Nanoparticles , Phthalocyanines , Zinc , Silica , Photochemistry , Adsorption
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4537 , http://hdl.handle.net/10962/d1017917
- Description: This thesis reports on the synthesis and characterization of both symmetrical and asymmetrical Zinc phthalocyanine complexes. The complexes contained groups such as carboxylic, amino and alkyne for covalent grafting to the surface of silica nanoparticles. The use of symmetrical and asymmetrical complexes was geared towards comparing the non-specific binding of the symmetrical complexes to the specific binding observed in the asymmetrical complexes. The complexes were also doped within the silica matrix and compared to the surface grafted conjugates. The complexes and the conjugates were well characterized with a variety of techniques. The fluorescence lifetimes of the phthalocyanine complexes containing either terminal carboxylic groups or an alkyne group showed a mono-exponential decay while the amino containing phthalocyanine complexes gave a bi-exponential decay. A similar trend was observed for their respective conjugates. Some of the conjugates of the asymmetrical complexes showed a decrease in fluorescence lifetimes and a corresponding decrease in fluorescence quantum yields. The fluorescence quantum yields for all the symmetrical complexes studied showed either an improvement or retained the luminescence of the grafted phthalocyanine complex. Most of the conjugates showed a faster intersystem crossing time in comparison to the complexes alone. The grafted or doped conjugates containing symmetrical phthalocyanine complexes with carboxyl groups showed improvements both in fluorescence and triplet quantum yields. All the conjugates except two showed an increase in triplet lifetimes when compared to their respective phthalocyanine complexes. Optical nonlinearities of nine of the phthalocyanine complexes were studied and all the complexes showed characteristic reverse saturable absorption behavior. Complex 10 showed the most promising optical limiting behavior. The aggregation and dissolution studies of the conjugates were also carried out in a simulated biological medium and the silicon level detected was noticed to have increased with incubation time.
- Full Text:
- Date Issued: 2015
Photophysicochemical studies of phenylthio phthalocyanines interaction with gold nanoparticles and applications in dye sensitised solar cells and optical limiting
- Authors: Forteath, Shaun
- Date: 2012
- Subjects: Phthalocyanines , Nanoparticles , Photochemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4334 , http://hdl.handle.net/10962/d1004995 , Phthalocyanines , Nanoparticles , Photochemistry
- Description: The syntheses, spectroscopic characterisation, photophysical and photochemical studies have been conducted for a variety of phenylthio substituted phthalocyanines (Pcs). Comparisons have been made taking into consideration the influence of the central metal ion, solvent properties and substituent type. The optical limiting properties were also determined for all the Pcs synthesised. A low-symmetry metallophthalocyanine complex was similarly characterised and the photoelectrochemical parameters determined when used as a sensitiser of nanoporous ZnO. The symmetric analogue was conjugated to gold nanoparticles to determine the influence of interactions on its photophysical properties and distinct differences occurred in the absorption and fluorescence spectra suggesting successful formation of conjugates.
- Full Text:
- Date Issued: 2012
- Authors: Forteath, Shaun
- Date: 2012
- Subjects: Phthalocyanines , Nanoparticles , Photochemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4334 , http://hdl.handle.net/10962/d1004995 , Phthalocyanines , Nanoparticles , Photochemistry
- Description: The syntheses, spectroscopic characterisation, photophysical and photochemical studies have been conducted for a variety of phenylthio substituted phthalocyanines (Pcs). Comparisons have been made taking into consideration the influence of the central metal ion, solvent properties and substituent type. The optical limiting properties were also determined for all the Pcs synthesised. A low-symmetry metallophthalocyanine complex was similarly characterised and the photoelectrochemical parameters determined when used as a sensitiser of nanoporous ZnO. The symmetric analogue was conjugated to gold nanoparticles to determine the influence of interactions on its photophysical properties and distinct differences occurred in the absorption and fluorescence spectra suggesting successful formation of conjugates.
- Full Text:
- Date Issued: 2012
Alkane oxidation using metallophthalocyanine as homogeneous catalysts
- Authors: Grootboom, Natasha Denise
- Date: 2002
- Subjects: Oxidation , Alkanes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4449 , http://hdl.handle.net/10962/d1007794
- Description: Iron polychlorophthalocyanine (FePc(Cl)₁₆) and tetrasulfophthalocyanine ([M¹¹TSPc]⁴) complexes of iron, cobalt and manganese are employed as catalysts for the oxidation of cyclohexane using tert-butyl hydroperoxide (TBHP), chloroperoxybenzoic acid (CPBA) and hydrogen peroxide as oxidants. Catalysis using the FePc(Cl)₁₆ was performed in a dimethylformamide:dichloromethane (3 :7) solvent mixture. For the [Fe¹¹TSPc]⁴⁻, [Co¹¹TSPc]⁻ and [Mn¹¹TSPc]⁴⁻catalysts, a water:methanol (1:9) mixture was employed. The products of the catalysis are cyclohexanone, cyclohexanol and cyclohexanediol. The relative percentage yields, percentage selectivity and overall percentage conversion of the products depended on types of oxidant, or catalyst, concentrations of substrate or catalysts and temperature. TBHP was found to be the best oxidant since minimal destruction of the catalyst and higher selectivity in the products were observed when this oxidant was employed. Of the four catalysts investigated [Fe¹¹TSPc]⁴⁻ yielded the highest overall percentage conversion of 20%.The mechanism of the oxidation of cyclohexane in the presence of the FePc(Cl)₁₆ and [M¹¹TSPc]⁴⁻ involves the oxidation of these catalysts, forming an Fe(IlI) phthalocyanine species as an intermediate. Electrocatalysis using [Co¹¹TSPc]⁴⁻ as catalyst, employed an aqueous pH 7 buffer medium for electro-oxidation of 4-pentenoic acid. An enone is suggested as the only oxidation product of 4-pentenoic acid. No degradation of [Co¹¹TSPc]⁴⁻ was observed during the electrocatalytic process. In this process water was used as a source of oxygen therefore eliminating the production of by products from oxidant as in the case of TBHP and CPBA. This system was studied In an attempt to set up conditions for alkane electrocatalytic oxidation.
- Full Text:
- Date Issued: 2002
- Authors: Grootboom, Natasha Denise
- Date: 2002
- Subjects: Oxidation , Alkanes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4449 , http://hdl.handle.net/10962/d1007794
- Description: Iron polychlorophthalocyanine (FePc(Cl)₁₆) and tetrasulfophthalocyanine ([M¹¹TSPc]⁴) complexes of iron, cobalt and manganese are employed as catalysts for the oxidation of cyclohexane using tert-butyl hydroperoxide (TBHP), chloroperoxybenzoic acid (CPBA) and hydrogen peroxide as oxidants. Catalysis using the FePc(Cl)₁₆ was performed in a dimethylformamide:dichloromethane (3 :7) solvent mixture. For the [Fe¹¹TSPc]⁴⁻, [Co¹¹TSPc]⁻ and [Mn¹¹TSPc]⁴⁻catalysts, a water:methanol (1:9) mixture was employed. The products of the catalysis are cyclohexanone, cyclohexanol and cyclohexanediol. The relative percentage yields, percentage selectivity and overall percentage conversion of the products depended on types of oxidant, or catalyst, concentrations of substrate or catalysts and temperature. TBHP was found to be the best oxidant since minimal destruction of the catalyst and higher selectivity in the products were observed when this oxidant was employed. Of the four catalysts investigated [Fe¹¹TSPc]⁴⁻ yielded the highest overall percentage conversion of 20%.The mechanism of the oxidation of cyclohexane in the presence of the FePc(Cl)₁₆ and [M¹¹TSPc]⁴⁻ involves the oxidation of these catalysts, forming an Fe(IlI) phthalocyanine species as an intermediate. Electrocatalysis using [Co¹¹TSPc]⁴⁻ as catalyst, employed an aqueous pH 7 buffer medium for electro-oxidation of 4-pentenoic acid. An enone is suggested as the only oxidation product of 4-pentenoic acid. No degradation of [Co¹¹TSPc]⁴⁻ was observed during the electrocatalytic process. In this process water was used as a source of oxygen therefore eliminating the production of by products from oxidant as in the case of TBHP and CPBA. This system was studied In an attempt to set up conditions for alkane electrocatalytic oxidation.
- Full Text:
- Date Issued: 2002