Comprehensive data on the mechanical properties and biodegradation profile of polylactide composites developed for hard tissue repairs
- Authors: Abraham K. Aworinde , Samson O. Adeosun , Festus A. Oyawale , Eyere Emagbetere , Felix A. Ishola , Obafemi Olatunji , Stephen A. Akinlab , Sunday O. Oyedepo , Oluseyi O. Ajayi , Esther T. Akinlabi
- Date: 2020
- Type: Journal Article
- Identifier: http://hdl.handle.net/11260/4152 , vital:44032
- Full Text:
Fluorescence behaviour of supramolecular hybrids containing graphene quantum dots and pyrene-derivatized phthalocyanines and porphyrins
- Authors: Achadu, Ojodomo John , Managa, Muthumuni , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188953 , vital:44801 , xlink:href="https://doi.org/10.1016/j.jphotochem.2016.10.029"
- Description: Novel pyrene-derivatized zinc and cobalt phthalocyanines (Pcs) and porphyrins (Ps) were immobilized on graphene quantum dots (GQDs) to form GQDs-Pcs and GQDs-Ps supramolecular hybrids via the π–π stacking interaction method. Spectroscopic evidence shows that the resultant hybrids were stable owing to the strong π–π stacking interaction between the GQDs and the respective Pcs and Ps, thus leading to the fabrication of interesting and functional supramolecular hybrids by taking advantage of the delocalized π electron systems of GQDs and the macrocycles. The conjugates showed increased fluorescence quantum yields for the Pcs/Ps, but decreased values for the GQDs in the conjugates. These novel hybrid materials could potentially be deployed for studies in both fundamental and applied perspectives due to the synergistic contributions resulting from the combination of their excellent electronic and optical properties.
- Full Text:
- Date Issued: 2017
The interaction between graphene quantum dots grafted with polyethyleneimine and Au@ Ag nanoparticles
- Authors: Achadu, Ojodomo John , Uddin, Imran , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188679 , vital:44775 , xlink:href="https://doi.org/10.1016/j.jphotochem.2016.03.016"
- Description: Graphene quantum dots grafted with polyethyleneimine (GQDs-PEI) and Au@Ag core-shell nanoparticles blend was demonstrated to be a novel biosensing nanoprobe for the rapid and highly sensitive detection of biothiols such as cysteine (Cys), homocysteine (Hcys) and glutathione (GSH). The fluorescence emission of GQDs-PEI was quenched efficiently upon interaction with Au@Ag core-shell nanoparticles. The quenched fluorescence emission of the GQDs-PEI was restored in the presence of the biothiols. The fluorimetric sensing is based on the strong affinity between the mercapto (SH) groups of the biothiols and the Au@Ag core-shell nanoparticles by which the interaction between GQDs-PEI and Au@Ag core-shell nanoparticles was disrupted with a consequent modulation (‘turn-on’) of the quenched GQDs-PEI emission. Thus, a new, simple, rapid and highly sensitive fluorescence nanoprobe for detecting biothiols has been developed in this work.
- Full Text:
- Date Issued: 2016
Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines
- Authors: Achadu, Ojodomo John , Uddin, Imran , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188777 , vital:44784 , xlink:href="https://doi.org/10.1016/j.jphotochem.2015.11.006"
- Description: Graphene quantum dots (GQDs) and zinc phthalocyanines interactions in different modes (covalent and non-covalent) are reported in this study. GQDs were covalently attached to the following complexes: zinc tetraamino phthalocyanine (ZnTAPc) via amide coupling, zinc tetracarboxyphenoxy Pc (ZnTCPPc) (π–π interaction) and cationic zinc tetrapyridiloxy Pc (ZnTmPyPc) (ionic interaction). GQDs fluorescence was quenched in the presence of the ZnPc derivatives. The nanoensembles of GQDs–ZnPcs showed stimulated emissions of the ZnPcs. The suggested quenching mechanism is through Förster resonance energy transfer (FRET). These novel nanoensembles hold promise for various optical and luminescence based applications.
- Full Text:
- Date Issued: 2016
Graphene quantum dots decorated with maleimide and zinc tetramaleimido-phthalocyanine: Application in the design of “OFF-ON” fluorescence sensors for biothiols
- Authors: Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188282 , vital:44741 , xlink:href="https://doi.org/10.1016/j.talanta.2017.01.031"
- Description: The fabrication of maleimide-derivatized graphene quantum dots (M-GQDs) and zinc phthalocyanine (2) as novel sensor probes for the selective detection of biothiols (cysteine, homocysteine or glutathione) through the rapid and specific Michael addition reaction between biothiols and the maleimide-derivatized probes is presented in this study. GQDs directly functionalized with maleimide units (M-GQDs) were synthesized and deployed for biothiols recognition following the principle of Michael addition. M-GQDs probe was found to be highly sensitive and selective towards biothiols detection in the nanomolar range in aqueous solution and at physiological pH (7.0). On the other hand, non-covalent interaction between pristine GQDs and novel zinc tetramaleimido-derivatized phthalocyanine resulted in the quenching of the pristine GQDs fluorescence emission which was switched back to the “ON” mode by Michael addition mechanism in the presence of biothiols. Tested relevant biomolecules did not interfere in the quantitative recognition of the biothiols. The probes showed to be highly sensitive, specific and selective for biothiols sensing in simulated real samples.
- Full Text:
- Date Issued: 2017
Graphene quantum dots coordinated to mercaptopyridine-substituted phthalocyanines: Characterization and application as fluorescence “turn ON” nanoprobes
- Authors: Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188293 , vital:44742 , xlink:href="https://doi.org/10.1016/j.saa.2016.11.043"
- Description: This study reports on the design of novel nanoconjugates of graphene quantum dots (GQDs) and tetra or octa-mercaptopyridine-substituted zinc and aluminium phthalocyanines (Pcs) deployed as fluorescence “turn ON” nanoprobes. The phthalocyanines were separately adsorbed onto the planar structure of graphene quantum dots (GQDs) via π-π stacking interaction to form GQDs-mercaptopyridine Pcs nanoconjugates. The quaternized Pc complexes could also interact with the GQDs through electrostatic attraction due to the positive charges on the Pcs ring substituents and the negative charges on the surface of GQDs. The fluorescence emission of the GQDs was quenched upon coordination to the respective Pcs. However, the fluorescence emission was “turned ON” in the presence of Hg2 + employed as a test analyte. The mechanism of the “turn ON” of the GQDs emission in the nanoconjugates is ascribed to the strong affinity of Hg2 + to bind with the bridging sulfur on the Pcs periphery thereby disrupting the π-π stacking interaction between the GQDs and the Pcs with a consequent “turn ON” of the coordinated GQDs' fluorescence.
- Full Text:
- Date Issued: 2017
Graphene quantum dots anchored onto mercaptopyridine-substituted zinc phthalocyanine-Au@ Ag nanoparticle hybrid: Application as fluorescence “off-on-off” sensor for Hg2+ and biothiols
- Authors: Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188194 , vital:44731 , xlink:href="https://doi.org/10.1016/j.dyepig.2017.06.002"
- Description: Novel supramolecular hybrid containing polyethyleneimine-functionalized graphene quantum dots (PEI-GQDs) and mercaptopyridine-substituted zinc phthalocyanine (Pc)-Au@Ag nano-alloys is presented in this study. The designed hybrid was employed as a dual fluorescence nanoprobe for Hg2+ and biothiol detection in aqueous solution using PEI-GQDs as the fluorescence switching signal probe. The dual sensing platform for the analytes detection is firstly, based on the quenching (turn “OFF”) of the PEI-GQDs fluorescence upon π-π interaction or electrostatic attraction with Pc-Au@Ag conjugate. The quenched fluorescence can be switched back to the “ON” mode in the presence of Hg2+ and switched “OFF” again when biothiols are introduced to capture the Hg2+ ion via the formation of the strong metal-thiol bond (Hg-S). The “off-on-off” processes were modulated by different amounts of Hg2+ and biothiols. The nanoprobes were found to be highly stable and selective towards the target analytes in the presence of other amino acids and metal ions. Also, the probes were successfully deployed in the assay of the test analytes in spiked samples.
- Full Text:
- Date Issued: 2017
Fluorescence “turn-ON” nanosensor for cyanide ion using supramolecular hybrid of graphene quantum dots and cobalt pyrene-derivatized phthalocyanine
- Authors: Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187594 , vital:44674 , xlink:href="https://doi.org/10.1016/j.dyepig.2018.08.038"
- Description: A functional hybrid of graphene quantum dots (GQDs) and cobalt pyrene-derivatized phthalocyanine (CoPc) used as a sensitive nanoprobe for the recognition of cyanide ion (CN−) is described in this work. The fluorescence of GQDs was quenched upon non-covalent (π-π stacking) hybrid formation with CoPc via a possible energy transfer pathway. However, in the presence of CN−, the interaction between GQDs and CoPc was perturbed, such that the fluorescence of GQDs initially quenched by CoPc was found to be efficiently recovered in the presence of CN−. Amongst the molecules and anions tested to ascertain their effects on the fluorescence behaviour of the hybrid, only CN− ion induced the tunable “off-on” restoration of the fluorescence of GQDs, which demonstrates the selectivity of the hybrid towards CN−. The restored fluorescence signals of the GQDs were linearly modulated by different concentrations of CN− and were used for the quantitative assay of CN− with high sensitivity coupled with rapid detection time. The detection was in the linear range of 1.0–50.0 nM with limits of detection (LOD) of 0.5 nM. The analysis of spiked samples for the recovery of CN− further demonstrated the applicability of the hybrid for the satisfactory detection of the target analyte.
- Full Text:
- Date Issued: 2019
Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes
- Authors: Acheampong, M A , Coombes, Candice A , Moore, Sean D , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419399 , vital:71641 , xlink:href="https://doi.org/10.1016/j.jip.2020.107436"
- Description: Several isolates of Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitacae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitacae) have been investigated as possible microbial control agents of key citrus pests in South Africa. Although laboratory results have been promising, field trials against foliar pests have shown limited success. These findings highlighted the need to investigate other biological attributes of these fungal isolates besides virulence in order to select candidates that may be better suited for the foliar environment. Thus, this study investigated the influence of temperature on the in vitro growth of seven indigenous local isolates and the humidity requirements necessary to promote successful infection, in comparison with two commercial isolates (B. bassiana PPRI 5339 and M. anisopliae ICIPE 69). All the fungal isolates grew across a range of temperatures (8–34 °C) and optimally between 26 and 28 °C. Similarly, fungal infection of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) fifth instars occurred across a range of humidity levels (12%, 43%, 75%, 98%) regardless of fungal concentration, although external sporulation was restricted to treatments exposed to 98% relative humidity. It was concluded that neither temperature nor humidity, when considered alone, is likely to significantly influence the efficacy of any of the isolates in the field, given that they are active within temperature and humidity ranges experienced in South African citrus orchards.
- Full Text:
- Date Issued: 2020
Fluorescence “turn on” probe for bromide ion using nanoconjugates of glutathione-capped CdTe@ ZnS quantum dots with nickel tetraamino-phthalocyanine
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190479 , vital:44998 , xlink:href="https://doi.org/10.1016/j.jphotochem.2013.05.013"
- Description: In this paper, three differently sized glutathione (GSH)-capped CdTe@ZnS quantum dots (QDs) have been successfully conjugated to nickel tetraamino-phthalocyanine (NiTAPc) to form different QDs-NiTAPc nanocomplexes. Several techniques such as TEM, FT-IR, time-resolved fluorescence measurement and electronic spectroscopy were employed to characterize the nanocomplex. Bromide ion was chosen as a model anion to test the efficacy of the nanoprobe. The fluorescence of the nanoconjugate was “turned off” upon binding but was progressively “turned on” upon interaction with varying concentrations of bromide ion. Experimental results showed that the quantum size effect of nanocrystal QD determined the overall sensitivity and selectivity of the nanoprobe and followed the order QD563-NiTAPc > QD605-NiTAPc > QD621-NiTAPc. The mechanism of reaction is proposed.
- Full Text:
- Date Issued: 2013
Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7244 , http://hdl.handle.net/10962/d1020248
- Description: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface. , Original publication is available at http://dx.doi.org/10.1016/j.jallcom.2015.05.083
- Full Text: false
- Date Issued: 2015
Optical properties of water-soluble L-cysteine-capped alloyed CdSeS quantum dot passivated with ZnSeTe and ZnSeTe/ZnS shells
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193609 , vital:45352 , xlink:href="https://doi.org/10.1016/j.optmat.2015.05.024"
- Description: Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing L-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed L-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties.
- Full Text:
- Date Issued: 2015
Probing the sensitive and selective luminescent detection of peroxynitrite using thiol-capped CdTe and CdTe@ ZnS quantum dots
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193757 , vital:45393 , xlink:href="https://doi.org/10.1016/j.jlumin.2012.08.002"
- Description: CdTe and CdTe@ZnS quantum dots (QDs) capped with 3-mercaptopropionic acid (MPA), thioglycolic acid (TGA), or glutathione (GSH) have been employed for the first time as luminescent probes for the sensitive and selective detection of peroxynitrite (ONOO−) in aqueous solution. The sensitivity of the proposed probe followed the order: MPA–TGA–CdTe@ZnS>GSH–TGA–CdTe@ZnS>MPA–CdTe QDs. The varying degree of quenching is elucidated based on the QD–thiolate bond of CdTe@ZnS being more sensitive to oxidation from ONOO− than CdTe. The selectivity of the probe in the presence of co-existing species followed the order: GSH–TGA–CdTe@ZnS>MPA–TGA–CdTe@ZnS>MPA–CdTe QDs. QDs capped with MPA showed less selectivity for ONOO− than GSH. The best limit of detection (LOD) of 12.6 nM was obtained for MPA–TGA–CdTe@ZnS QDs. Time-resolved fluorescence measurements indicated that the interaction between ONOO− and the QDs is static in nature.
- Full Text:
- Date Issued: 2013
Optical properties of water-soluble l-cysteine-capped alloyed CdSeS quantum dot passivated with ZnSeTe and ZnSeTe/ZnS shells
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7260 , http://hdl.handle.net/10962/d1020269
- Description: Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing l-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed l-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties. , Original publication is available at http://dx.doi.org/10.1016/j.optmat.2015.05.024
- Full Text: false
- Date Issued: 2015
Conjugation of mono-substituted phthalocyanine derivatives to CdSe@ ZnS quantum dots and their applications as fluorescent-based sensors
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189842 , vital:44936 , xlink:href="https://doi.org/10.1016/j.synthmet.2013.11.016"
- Description: Unsymmetrically substituted derivatives of aluminium amino phthalocyanines were synthesized for the first time, fully characterized and conjugated to CdSe@ZnS quantum dots (QDs). The conjugates were employed as fluorescence-based sensors for anion sensing. Among the anions that enhanced the fluorescence of the probe, fluoride ion was chosen as the test ion to test the efficacy of the probe. Förster resonance energy transfer from the QDs to the phthalocyanine was observed as an indication for the fluorescence quenching of the QDs upon binding to the phthalocyanine. The fluorescence of the linked QDs was progressively enhanced, and linearly proportional to increasing concentrations of fluoride ion. The type of substituent attached to the phthalocyanine ring influenced the efficiency of fluorescence enhancement. The proposed nanoprobe has been employed to detect fluoride ion in cell culture medium and tap water.
- Full Text:
- Date Issued: 2014
Effects of analytes on the fluorescence properties of CdTe@ ZnS quantum dots decorated with cobalt tetraamino-phthalocyanine
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189829 , vital:44935 , xlink:href="https://doi.org/10.1016/j.jlumin.2013.09.079"
- Description: In this work, we have carried out an investigation on the effects of different biologically active analytes on the fluorescence response of glutathione-capped CdTe@ZnS quantum dots (QDs)-colbalt tetraamino-phthalocyanine nanoconjugate system. Firstly, fluorescence quenching occurred. Experimental results showed that some analytes either “turned on”, others further quenched or showed no effect on the fluorescence emission of the nanoprobe.
- Full Text:
- Date Issued: 2014
Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193575 , vital:45349 , xlink:href="https://doi.org/10.1016/j.jallcom.2015.05.083"
- Description: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface.
- Full Text:
- Date Issued: 2015
Effects of analytes on the fluorescence properties of CdTe@ZnS quantum dots decorated with cobalt tetraamino-phthalocyanine
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Language: English
- Type: Article
- Identifier: vital:7315 , http://hdl.handle.net/10962/d1020541
- Description: In this work, we have carried out an investigation on the effects of different biologically active analytes on the fluorescence response of glutathione-capped CdTe@ZnS quantum dots (QDs)-colbalt tetraamino-phthalocyanine nanoconjugate system. Firstly, fluorescence quenching occurred. Experimental results showed that some analytes either “turned on”, others further quenched or showed no effect on the fluorescence emission of the nanoprobe. , Original publication is available at http://dx.doi.org/10.1016/j.jlumin.2013.09.079
- Full Text: false
Photophysical properties of a series of alloyed and non-alloyed water-soluble l-cysteine-capped core quantum dots
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188486 , vital:44758 , xlink:href="https://doi.org/10.1016/j.jallcom.2016.10.276"
- Description: Photophysical properties of quantum dots (QDs) such as their photoluminescence (PL) quantum yield (QY), exciton lifetime and PL stability are important parameters used to unravel their chemical and physical characteristics. In this work, we have comparatively investigated the photophysical properties of a series of L-cysteine-capped non-alloyed (CdTe and CdSe) and alloyed (CdZnTe, CdSeS, CdSeTe and CdSeTeS) core QDs. Each of the QDs varied in their size and PL emission wavelength. We observe no physical relationship between the PL QY of the QDs and their PL stability. Based on the PL stability assessment, CdTe QDs with a high PL QY value of 88% exhibited poor PL stability while moderate PL stability was observed for CdZnTe (QY = 78%); CdSe (QY = 3%); and CdSeTe QDs (QY = ∼3%). Alloyed CdSeS (QY = ∼69%) and CdSeTeS (QY = 23%) QDs exhibited good PL stability and can serve as potential fluorophores for a wide range of chemical and biological applications. Generally, it is proposed that the structural nature of the QDs played a significant role in their overall photophysical properties. The information provided in this work will assist in the selection of core QDs suitable for different applications.
- Full Text:
- Date Issued: 2017
Fluorescence properties of alloyed ZnSeS quantum dots overcoated with ZnTe and ZnTe/ZnS shells
- Authors: Adegoke, Oluwasesan , Mashazi, Philani N , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240754 , vital:50868 , xlink:href="https://doi.org/10.1016/j.optmat.2016.02.024"
- Description: Fluorescent alloyed ternary ZnSeS quantum dots (QDs) have been synthesized via the pyrolysis of organometallic precursors. The effects of passivation of ZnTe and ZnTe/ZnS shells on the optical properties of the ternary alloyed ZnSeS core have been studied. A ligand exchange reaction using L-cysteine as a capping ligand was used to obtain water-soluble nanocrystals. The nanocrystals were each characterized by UV/vis absorption and fluorescence spectroscopy, transmission electron microscopy, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) quantum yield (QY) of alloyed ZnSeS QDs was 14% and this value increased to 27% when ZnTe was overcoated around the surface but further coating with a ZnS shell decreased the PL QY slightly to 24%. This implies that ZnTe shell suppressed non-radiative recombination exciton states in the alloyed core while further layering with a ZnS shell offered no further improvement in suppressing the defect states. XPS analysis confirmed the presence of the first shell layering but showed a weakened intensity signal of S (2p) and Se (3d) for the ZnSeS/ZnTe/ZnS QDs. Our work demonstrates for the first time that shell passivation of alloyed Zn-based QDs can offer improved optical properties. We hope the optical information presented in this work will be useful in the selection of alloyed Zn-based QDs appropriate for the intended application.
- Full Text:
- Date Issued: 2016