Heterologous expression of the helicoverpa armigera stunt virus in Saccharomyces cerevisiae
- Authors: Venter, Philip Arno
- Date: 2002
- Subjects: Helicoverpa armigera Saccharomyces cerevisiae
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3895 , http://hdl.handle.net/10962/d1003811
- Description: Lepidopteran insects like Helicoverpa armigera, more commonly known as the cotton bollworm, are economically important pests of a wide variety of crops throughout the world. The Helicoverpa armigera stunt virus (HaSV), a tetravirus with a bipartite single-stranded positive-sense RNA genome, has great potential as a biological pesticide against H. armigera. The larger genomic strand of this virus (RNA1) encodes the viral replicase, while the other (RNA2) encodes the 71 kDa capsid protein precursor (p71). 240 copies of p71 assemble into a procapsid with the concomitant encapsidation of the viral RNA. This is followed by a complex maturation event that is characterized by the autoproteolytic cleavage of p71 into the 64 kDa capsid protein (P64) and a 7 kDa peptide (p7). The rearrangements that occur during maturation results in the formation of mature HaSV capsids that can thereupon deliver RNA to other susceptible host cells. The principal objective of the research described in this study was to demonstrate that this virus could be assembled in Saccharomyces cerevisiae. S. cerevisiae expression vectors were constructed for the production of p71. This protein was detected in cell lysates from two different strains of S. cerevisiae, both containing either chromosomal or episomal copies of an expression cassette for P71. A number of factors relating to the expression of P71 (e.g. strains used, expression loci and expression rate) and the preparation of protein extracts from S. cerevisiae (e.g. the presence of various protease inhibitors and salt concentrations) were examined to attain optimal levels of soluble p71. A small fraction of the optimized soluble p71 was shown to be in the form of virus-like particles (VLPs), with a yield of ≤10⁷ VLPs from a 1.5l culture of P71⁺ cells. These particles were exclusively in the procapsid form, had a similar buoyant density to that of wild-type HaSV and could undergo maturation when the pH was reduced to 5. S. cerevisiae vectors were constructed for the episomal expression of the HaSV genomic RNAs. These vectors directed the transcription of RNA1 and RNA2 transcripts, which had similar sizes to those of the HaSV genomic RNAs. Mature HaSV particles were purified from cells, transgenic for P71, RNA1 and RNA2, by way of two different virus purification protocols that were developed during this study. RT-PCR analyses on RNA-extracts from these particles demonstrated that RNA transcripts, which were produced in trans with p71, could be encapsidated by HaSV capsids in S. cerevisiae. A droplet-feed bioassay on H. armigera larvae demonstrated that the S. cerevisiae-derived HaSV particles caused impaired larval development. This response was correlated with the detection of HaSV RNA2 in RNA extractions from larvae that were used in this bioassay. The results that were generated through the course of this study, provided proof for the concept of the non-host production of infectious HaSV particles from S. cerevisiae. This work could serve as a foundation for future research on the development of an expression system for the large-scale production of this virus as a biopesticide.
- Full Text:
- Date Issued: 2002
- Authors: Venter, Philip Arno
- Date: 2002
- Subjects: Helicoverpa armigera Saccharomyces cerevisiae
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3895 , http://hdl.handle.net/10962/d1003811
- Description: Lepidopteran insects like Helicoverpa armigera, more commonly known as the cotton bollworm, are economically important pests of a wide variety of crops throughout the world. The Helicoverpa armigera stunt virus (HaSV), a tetravirus with a bipartite single-stranded positive-sense RNA genome, has great potential as a biological pesticide against H. armigera. The larger genomic strand of this virus (RNA1) encodes the viral replicase, while the other (RNA2) encodes the 71 kDa capsid protein precursor (p71). 240 copies of p71 assemble into a procapsid with the concomitant encapsidation of the viral RNA. This is followed by a complex maturation event that is characterized by the autoproteolytic cleavage of p71 into the 64 kDa capsid protein (P64) and a 7 kDa peptide (p7). The rearrangements that occur during maturation results in the formation of mature HaSV capsids that can thereupon deliver RNA to other susceptible host cells. The principal objective of the research described in this study was to demonstrate that this virus could be assembled in Saccharomyces cerevisiae. S. cerevisiae expression vectors were constructed for the production of p71. This protein was detected in cell lysates from two different strains of S. cerevisiae, both containing either chromosomal or episomal copies of an expression cassette for P71. A number of factors relating to the expression of P71 (e.g. strains used, expression loci and expression rate) and the preparation of protein extracts from S. cerevisiae (e.g. the presence of various protease inhibitors and salt concentrations) were examined to attain optimal levels of soluble p71. A small fraction of the optimized soluble p71 was shown to be in the form of virus-like particles (VLPs), with a yield of ≤10⁷ VLPs from a 1.5l culture of P71⁺ cells. These particles were exclusively in the procapsid form, had a similar buoyant density to that of wild-type HaSV and could undergo maturation when the pH was reduced to 5. S. cerevisiae vectors were constructed for the episomal expression of the HaSV genomic RNAs. These vectors directed the transcription of RNA1 and RNA2 transcripts, which had similar sizes to those of the HaSV genomic RNAs. Mature HaSV particles were purified from cells, transgenic for P71, RNA1 and RNA2, by way of two different virus purification protocols that were developed during this study. RT-PCR analyses on RNA-extracts from these particles demonstrated that RNA transcripts, which were produced in trans with p71, could be encapsidated by HaSV capsids in S. cerevisiae. A droplet-feed bioassay on H. armigera larvae demonstrated that the S. cerevisiae-derived HaSV particles caused impaired larval development. This response was correlated with the detection of HaSV RNA2 in RNA extractions from larvae that were used in this bioassay. The results that were generated through the course of this study, provided proof for the concept of the non-host production of infectious HaSV particles from S. cerevisiae. This work could serve as a foundation for future research on the development of an expression system for the large-scale production of this virus as a biopesticide.
- Full Text:
- Date Issued: 2002
The preparation of antigen for the generation of polyclonal antibodies against the capsid subunit, VP1, and the viral protease, 3Cpro, of Theiler's murine encephalomyelitis virus (TMEV)
- Authors: Moetlhoa, Boitumelo
- Date: 2014
- Subjects: Enteroviruses , Encephalomyelitis , Antigens
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4118 , http://hdl.handle.net/10962/d1013225
- Description: The Picornaviridae is a family of viruses of economic importance that have a major impact on human and animal health. Some of the major genera found in the Picornaviridae family are Enterovirus which includes Poliovirus (PV) and Human Rhinovirus (HRV), Cardiovirus which includes Theiler’s murine encephalomyelitis virus (TMEV) and Saffold virus (SAFV), Aphthovirus of which the Foot and Mouth disease virus (FMDV) is a member and Hepatovirus which includes Hepatitis A virus (HAV). Picornaviruses have a single stranded, positive sense RNA genome which is approximately 7.5-8.4 kb pairs in size. The picornavirus genome is translated into a large polyprotein and is proteolytically cleaved by viral proteases namely 2Apro, 3Cpro and 3CDpro into mature viral structural and non-structural polypeptides encoded by the P1, P2 and P3 domains. Picornaviruses utilise host cell machinery and cellular pathways for entry and uncoating, genome replication and capsid assembly. In our laboratory, we are studying the mechanisms by which TMEV interacts with host cell components and our recent research shows that molecular chaperones are required for a production infection. To follow up on this observation, the overall aim of this study was to prepare antigen for the generation of polyclonal antibodies against the TMEV VP1 and 3Cpro proteins. To this end, the TMEV VP1 and 3Cpro amino acid sequences were analysed to identify hydrophobic, hydrophilic and antigenic regions. Homology modelling was performed in order to predict linear B cell epitopes exposed on the surface of the protein structures. The full length coding sequences of VP1 and 3Cpro were selected for amplification by the PCR and cloning into pQE-80L for expression in a bacterial system. Time course induction studies of recombinant VP1 and 3Cpro showed that the proteins were maximally expressed at 6 hrs and 4 hrs respectively. Recombinant VP1 was solubilised using the detergent, Sarcosyl and purified by Nickel affinity chromatography under native conditions. Because recombinant VP1 co-purified with an unidentified protein, the pET expression system was used. Although no protein of the estimated size was observed by SDS-PAGE analysis in the time course induction study, Western analysis using anti-His6 (2) antibodies detected a signal of ~35 kDa. Solubility studies resulted in the presence of two protein bands in the insoluble fraction resolved between 35 and 40 kDa. Recombinant 3Cpro expressed in a bacterial system was predominantly present in the insoluble fraction. Treatment with Sarcosyl had no effect on the solubility of the recombinant protein and it was therefore purified under denaturing conditions using 8M urea. Following dialysis, 3Cpro was used for immunisation of rabbits. Crude anti-TMEV 3Cpro antibodies were able to detect as little as 107 ng of bacterially expressed antigen at a dilution of 1:100 000 by Western analysis. The presence of contaminating proteins was reduced using pre-cleared anti-TMEV 3Cpro antibodies. The antibodies were unable to detect virally expressed 3Cpro in BHK-21 cell lysate supernatant. In an attempt to determine whether TMEV 3Cpro is present in the insoluble fraction, anti-TMEV 3Cpro antibodies were tested using total protein prepared from infected and mock-infected cell lysates. Once again, no protein band the size of 3Cpro was detected. The antibodies were further tested for detection of 3Cpro in TMEV-infected cells by indirect immunofluorescence and confocal microscopy. A diffuse cytoplasmic and perinuclear distribution, as well as nuclear staining, was observed in infected BHK-21 cells. This staining pattern resembled that observed for the HRV, FMDV and EMCV 3Cpro in similar experiments. Further experiments are required to confirm specificity of these antibodies for virally-expressed 3Cpro by Western analysis and indirect immunofluorescence.
- Full Text:
- Date Issued: 2014
- Authors: Moetlhoa, Boitumelo
- Date: 2014
- Subjects: Enteroviruses , Encephalomyelitis , Antigens
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4118 , http://hdl.handle.net/10962/d1013225
- Description: The Picornaviridae is a family of viruses of economic importance that have a major impact on human and animal health. Some of the major genera found in the Picornaviridae family are Enterovirus which includes Poliovirus (PV) and Human Rhinovirus (HRV), Cardiovirus which includes Theiler’s murine encephalomyelitis virus (TMEV) and Saffold virus (SAFV), Aphthovirus of which the Foot and Mouth disease virus (FMDV) is a member and Hepatovirus which includes Hepatitis A virus (HAV). Picornaviruses have a single stranded, positive sense RNA genome which is approximately 7.5-8.4 kb pairs in size. The picornavirus genome is translated into a large polyprotein and is proteolytically cleaved by viral proteases namely 2Apro, 3Cpro and 3CDpro into mature viral structural and non-structural polypeptides encoded by the P1, P2 and P3 domains. Picornaviruses utilise host cell machinery and cellular pathways for entry and uncoating, genome replication and capsid assembly. In our laboratory, we are studying the mechanisms by which TMEV interacts with host cell components and our recent research shows that molecular chaperones are required for a production infection. To follow up on this observation, the overall aim of this study was to prepare antigen for the generation of polyclonal antibodies against the TMEV VP1 and 3Cpro proteins. To this end, the TMEV VP1 and 3Cpro amino acid sequences were analysed to identify hydrophobic, hydrophilic and antigenic regions. Homology modelling was performed in order to predict linear B cell epitopes exposed on the surface of the protein structures. The full length coding sequences of VP1 and 3Cpro were selected for amplification by the PCR and cloning into pQE-80L for expression in a bacterial system. Time course induction studies of recombinant VP1 and 3Cpro showed that the proteins were maximally expressed at 6 hrs and 4 hrs respectively. Recombinant VP1 was solubilised using the detergent, Sarcosyl and purified by Nickel affinity chromatography under native conditions. Because recombinant VP1 co-purified with an unidentified protein, the pET expression system was used. Although no protein of the estimated size was observed by SDS-PAGE analysis in the time course induction study, Western analysis using anti-His6 (2) antibodies detected a signal of ~35 kDa. Solubility studies resulted in the presence of two protein bands in the insoluble fraction resolved between 35 and 40 kDa. Recombinant 3Cpro expressed in a bacterial system was predominantly present in the insoluble fraction. Treatment with Sarcosyl had no effect on the solubility of the recombinant protein and it was therefore purified under denaturing conditions using 8M urea. Following dialysis, 3Cpro was used for immunisation of rabbits. Crude anti-TMEV 3Cpro antibodies were able to detect as little as 107 ng of bacterially expressed antigen at a dilution of 1:100 000 by Western analysis. The presence of contaminating proteins was reduced using pre-cleared anti-TMEV 3Cpro antibodies. The antibodies were unable to detect virally expressed 3Cpro in BHK-21 cell lysate supernatant. In an attempt to determine whether TMEV 3Cpro is present in the insoluble fraction, anti-TMEV 3Cpro antibodies were tested using total protein prepared from infected and mock-infected cell lysates. Once again, no protein band the size of 3Cpro was detected. The antibodies were further tested for detection of 3Cpro in TMEV-infected cells by indirect immunofluorescence and confocal microscopy. A diffuse cytoplasmic and perinuclear distribution, as well as nuclear staining, was observed in infected BHK-21 cells. This staining pattern resembled that observed for the HRV, FMDV and EMCV 3Cpro in similar experiments. Further experiments are required to confirm specificity of these antibodies for virally-expressed 3Cpro by Western analysis and indirect immunofluorescence.
- Full Text:
- Date Issued: 2014
Isolation, expression and purification of the hydantoin hydrolysing enzymes of agrobacterium tumefaciens
- Authors: Clark, Sally-Ann
- Date: 2003
- Subjects: Agrobacterium tumefaciens , Amino acids Hydantoin Enzymes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4140 , http://hdl.handle.net/10962/d1016233
- Description: The production of enantiomerically pure amino acids is of industrial importance as they are used in the synthesis of a number of pharmaceuticals, insecticides and herbicides and biologically active peptides and hormones. A number of microorganisms have been identified which possess hydantoin hydrolysing enzymes that stereoselectively convert racemic hydantoins into anantiomerically pure amino acids. Consequently these microorganisms and their enzymes are sought after as biocatalysts for the production of amino acids. The isolation of novel hydantoin hydrolising enzymes with unique or improved biocatalytic characteristics is of importance for the development of potential biocatalysts to be used in the production of enantiomerically pure amino acids. The genes encoding an N-carbamoyl-amino acid amidohydrolase, an enzyme involved in the hydrolysis of hydantoin, was isolated by screening a genomic DNA library of Agrobacterium tumefacience RU-AE01. Nucleotide sequence analysis of the region upstream of this gene revealed a fragment of a gene encoding the hydantoinase enzyme. I this study, a DNA probe consisting of the gene encoding the N-carbamoyl amino acid amidohydrolase, on a large enough fragment of the genomic DNA library which would allow for the simultaneous isolation the hydantoinase gene located upstream. Recombinant expression of the genes encoding hydantoin hydrolysing enzymes has been used to facilitate the production and purification of these enzymes for their use as biocatalysts. Two genes (ncaR1 and ncaR2) encoding different N-carbamoyl-amino acid amidohydrolases with distinct nucleotide and deduced amino acid sequences were isolated from the genome of A, tumefaciens RU-OR. In this study, the heterologous expression of ncaR1 and ncaR2 was explored. Investigation into the optimisation of the heterologous expression of ncaR1 showed that reducing the growth temperature of the recombinant E. coli producing NcaR1 resulted in a two-fold increase in N-carbamoyl-amino acid amidohydrolase activity and solubility. Furthermore, NcaR1 was produced with a C-terminal 6xHis tag, but NcaR1-6xHis did not possess N-carbamoyl amino acid amidohydrolase activity. Furthermore, purification of NcaR-6xHis under native conditions using affinity chromatography performed, and used for the production of antibodies.
- Full Text:
- Date Issued: 2003
- Authors: Clark, Sally-Ann
- Date: 2003
- Subjects: Agrobacterium tumefaciens , Amino acids Hydantoin Enzymes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4140 , http://hdl.handle.net/10962/d1016233
- Description: The production of enantiomerically pure amino acids is of industrial importance as they are used in the synthesis of a number of pharmaceuticals, insecticides and herbicides and biologically active peptides and hormones. A number of microorganisms have been identified which possess hydantoin hydrolysing enzymes that stereoselectively convert racemic hydantoins into anantiomerically pure amino acids. Consequently these microorganisms and their enzymes are sought after as biocatalysts for the production of amino acids. The isolation of novel hydantoin hydrolising enzymes with unique or improved biocatalytic characteristics is of importance for the development of potential biocatalysts to be used in the production of enantiomerically pure amino acids. The genes encoding an N-carbamoyl-amino acid amidohydrolase, an enzyme involved in the hydrolysis of hydantoin, was isolated by screening a genomic DNA library of Agrobacterium tumefacience RU-AE01. Nucleotide sequence analysis of the region upstream of this gene revealed a fragment of a gene encoding the hydantoinase enzyme. I this study, a DNA probe consisting of the gene encoding the N-carbamoyl amino acid amidohydrolase, on a large enough fragment of the genomic DNA library which would allow for the simultaneous isolation the hydantoinase gene located upstream. Recombinant expression of the genes encoding hydantoin hydrolysing enzymes has been used to facilitate the production and purification of these enzymes for their use as biocatalysts. Two genes (ncaR1 and ncaR2) encoding different N-carbamoyl-amino acid amidohydrolases with distinct nucleotide and deduced amino acid sequences were isolated from the genome of A, tumefaciens RU-OR. In this study, the heterologous expression of ncaR1 and ncaR2 was explored. Investigation into the optimisation of the heterologous expression of ncaR1 showed that reducing the growth temperature of the recombinant E. coli producing NcaR1 resulted in a two-fold increase in N-carbamoyl-amino acid amidohydrolase activity and solubility. Furthermore, NcaR1 was produced with a C-terminal 6xHis tag, but NcaR1-6xHis did not possess N-carbamoyl amino acid amidohydrolase activity. Furthermore, purification of NcaR-6xHis under native conditions using affinity chromatography performed, and used for the production of antibodies.
- Full Text:
- Date Issued: 2003
An investigation into the interaction partners of the scaffold protein human CNK1 in the NF-κB pathway
- Authors: Moodley, Holisha
- Date: 2019
- Subjects: CNK1 , Scaffold proteins
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/96031 , vital:31228
- Description: The protein connector enhancer of KSR1 (CNK1) plays a role in a number of signalling pathways including those involved in cell proliferation, cell growth and differentiation. De-regulation of these pathways has been linked to the promotion of oncogenic signalling. The involvement of CNK1 in all of these diverse pathways indicates a need to better understand the role of this protein within the cell and within key signalling networks. The research provides a platform to understand the intricate relationships that occur between these key signalling networks with the potential to identify new drug targets. CNK1 is multifunctional scaffolding protein that has binding domains that mediate and co-ordinate signalling within the MAPK, Hippo, PI3K/AKT, JNK and NF-κB pathways as well as downstream of the AT2 receptor. The activity of CNK1 is regulated through its interactions with a range of different binding partners within these pathways. Of particular interest to this research is the role of CNK1 in NF-κB signalling. The deregulation of the NF-κB pathway is implicated in chronic inflammation, tissue damage and induction of cervical and breast cancer. CNK1 has been reported to regulate the non-canonical branch of the NF-κB pathway, upstream of the IKK complex however new findings lead to uncertainty about these conclusions. In addition, the interacting partner of CNK1 in the NF-κB pathway has not been elucidated. In this thesis, we aim to identify the binding partners of CNK1 in the NF-κB pathway. First, we validate an epitope-tagged CNK1-expression construct to express elevated levels of CNK1 in cervical cancer cells. We report that the expression of myc-CNK1 is comparable to endogenous CNK1. Cells expressing elevated CNK1 levels were used in traditional co-immunoprecipitation reactions to identify potential CNK1-interacting proteins. We present data that indicates a potential role for NIK in the CNK1 signalling complex. We discuss the weaknesses of the traditional co-immunoprecipitation reactions and design an alternative co-immunoprecipitation technique with which to study CNK1-interacting partners. In this system, a promiscuous biotin ligase fused to the protein sequence for CNK1 (BirA-CNK1) is used to label proteins proximal to CNK1 with biotin. Using this BirA- CNK1-expressing construct in cervical cancer cells, we demonstrate that CNK1 interacts with IKKα-IKKβ in the NF-κB pathway.
- Full Text:
- Date Issued: 2019
- Authors: Moodley, Holisha
- Date: 2019
- Subjects: CNK1 , Scaffold proteins
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/96031 , vital:31228
- Description: The protein connector enhancer of KSR1 (CNK1) plays a role in a number of signalling pathways including those involved in cell proliferation, cell growth and differentiation. De-regulation of these pathways has been linked to the promotion of oncogenic signalling. The involvement of CNK1 in all of these diverse pathways indicates a need to better understand the role of this protein within the cell and within key signalling networks. The research provides a platform to understand the intricate relationships that occur between these key signalling networks with the potential to identify new drug targets. CNK1 is multifunctional scaffolding protein that has binding domains that mediate and co-ordinate signalling within the MAPK, Hippo, PI3K/AKT, JNK and NF-κB pathways as well as downstream of the AT2 receptor. The activity of CNK1 is regulated through its interactions with a range of different binding partners within these pathways. Of particular interest to this research is the role of CNK1 in NF-κB signalling. The deregulation of the NF-κB pathway is implicated in chronic inflammation, tissue damage and induction of cervical and breast cancer. CNK1 has been reported to regulate the non-canonical branch of the NF-κB pathway, upstream of the IKK complex however new findings lead to uncertainty about these conclusions. In addition, the interacting partner of CNK1 in the NF-κB pathway has not been elucidated. In this thesis, we aim to identify the binding partners of CNK1 in the NF-κB pathway. First, we validate an epitope-tagged CNK1-expression construct to express elevated levels of CNK1 in cervical cancer cells. We report that the expression of myc-CNK1 is comparable to endogenous CNK1. Cells expressing elevated CNK1 levels were used in traditional co-immunoprecipitation reactions to identify potential CNK1-interacting proteins. We present data that indicates a potential role for NIK in the CNK1 signalling complex. We discuss the weaknesses of the traditional co-immunoprecipitation reactions and design an alternative co-immunoprecipitation technique with which to study CNK1-interacting partners. In this system, a promiscuous biotin ligase fused to the protein sequence for CNK1 (BirA-CNK1) is used to label proteins proximal to CNK1 with biotin. Using this BirA- CNK1-expressing construct in cervical cancer cells, we demonstrate that CNK1 interacts with IKKα-IKKβ in the NF-κB pathway.
- Full Text:
- Date Issued: 2019
Understanding the biomolecular interactions involved in dimerisation of the Saccharomyces cerevisiae eukaryotic translation initiation factor 5A
- Authors: Charlton, Jane Laura
- Date: 2012
- Subjects: Proteins -- Synthesis -- Research , Saccharomyces cerevisiae -- Research , Dimers , Dimers -- Research , Eukaryotic cells -- Research , Yeast -- Research
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4057 , http://hdl.handle.net/10962/d1004118 , Proteins -- Synthesis -- Research , Saccharomyces cerevisiae -- Research , Dimers , Dimers -- Research , Eukaryotic cells -- Research , Yeast -- Research
- Description: Translation initiation factor 5A (IF5A) is an essential, highly conserved protein found within all eukaryotic (eIF5A) and archaeal (aIF5A) cells. The IF5A protein is unique in that it contains the amino acid hypusine; a two-step post translational modification of a single, conserved lysine residue. Although hypusination of eIF5A is vital for eukaryotic cell viability, the primary role of the protein and its hypusine side chain remain a mystery. eIF5A, initially identified as a translation initiation factor, is not required for global protein synthesis leading to the prevailing proposal that eIF5A is purely involved in the translation of a select subset of mRNAs. Recently a number of mutational studies have focused on the conserved, hypusine-containing loop region of eIF5A where specific residues have been found to be essential for activity without affecting hypusination. It has been postulated that eIF5A exists as a dimer (40 kDa) under native conditions and that these residues may be at the interface of dimerisation. The aim of this research was therefore to conduct a mutational analysis of the loop region in support of this hypothesis. A functional analysis of the Saccharomyces cerevisiae eIF5A mutant proteins K48D, G50A, H52A and K56A revealed that these substitutions impaired growth to varying degrees in vivo with G50A and K48D mutant proteins displaying the most convincing defects. Gel filtration profiles gave unexpected results determining eIF5A mutant and wild type proteins to have a native molecular weight of 30 to 31 kDa, suggesting that the eIF5A oligomeric state may be transitory and subject to certain conditions. The inconclusive results obtained from using gel filtration studies led to an investigation into the feasibility of producing native, hypusinated peptides for future structural studies using nuclear magnetic resonance. Hypusinated and unhypusinated eIF5A were successfully separated into their domains making this a possibility. Finally, this study proposes a role for eIF5A in eukaryotic IRES-driven translation initiation.
- Full Text:
- Date Issued: 2012
- Authors: Charlton, Jane Laura
- Date: 2012
- Subjects: Proteins -- Synthesis -- Research , Saccharomyces cerevisiae -- Research , Dimers , Dimers -- Research , Eukaryotic cells -- Research , Yeast -- Research
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4057 , http://hdl.handle.net/10962/d1004118 , Proteins -- Synthesis -- Research , Saccharomyces cerevisiae -- Research , Dimers , Dimers -- Research , Eukaryotic cells -- Research , Yeast -- Research
- Description: Translation initiation factor 5A (IF5A) is an essential, highly conserved protein found within all eukaryotic (eIF5A) and archaeal (aIF5A) cells. The IF5A protein is unique in that it contains the amino acid hypusine; a two-step post translational modification of a single, conserved lysine residue. Although hypusination of eIF5A is vital for eukaryotic cell viability, the primary role of the protein and its hypusine side chain remain a mystery. eIF5A, initially identified as a translation initiation factor, is not required for global protein synthesis leading to the prevailing proposal that eIF5A is purely involved in the translation of a select subset of mRNAs. Recently a number of mutational studies have focused on the conserved, hypusine-containing loop region of eIF5A where specific residues have been found to be essential for activity without affecting hypusination. It has been postulated that eIF5A exists as a dimer (40 kDa) under native conditions and that these residues may be at the interface of dimerisation. The aim of this research was therefore to conduct a mutational analysis of the loop region in support of this hypothesis. A functional analysis of the Saccharomyces cerevisiae eIF5A mutant proteins K48D, G50A, H52A and K56A revealed that these substitutions impaired growth to varying degrees in vivo with G50A and K48D mutant proteins displaying the most convincing defects. Gel filtration profiles gave unexpected results determining eIF5A mutant and wild type proteins to have a native molecular weight of 30 to 31 kDa, suggesting that the eIF5A oligomeric state may be transitory and subject to certain conditions. The inconclusive results obtained from using gel filtration studies led to an investigation into the feasibility of producing native, hypusinated peptides for future structural studies using nuclear magnetic resonance. Hypusinated and unhypusinated eIF5A were successfully separated into their domains making this a possibility. Finally, this study proposes a role for eIF5A in eukaryotic IRES-driven translation initiation.
- Full Text:
- Date Issued: 2012
An investigation into the bacterial communities associated with pyrroloiminoquinone-producing South African latrunculid sponges
- Authors: Hilliar, Storm Hannah
- Date: 2018
- Subjects: Sponges South Africa Algoa Bay , Betaproteobacteria , Spirochaeta , Symbiosis , Bacterial communities
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62112 , vital:28128
- Description: Marine sponges belonging to the family Latrunculiidae are known for their production of cytotoxic pyrroloiminoquinone alkaloids and the South African coast provides a unique environment for the exploitation of these potent bioactive compounds. The isolation of structurally similar pyrroloiminoquinone compounds from unrelated, non poriferan sources has led to the suggestion that South African latrunculid pyrroloiminoquinones may be secondary metabolites produced by sponge associated microbial symbionts. Previous studies investigating the bacterial communities of South African latrunculid sponges have shown the conservation of distinct microbial populations with unusual bacterial taxa dominated by a novel betaproteobacterial and spirochete species. This study describes the further investigation into these associated bacterial communities, their conservation and sponge microbiome comparisons across spatial, temporal and environmental scales. The bacterial communities associated with seven latrunculid species representing three genera (Tsitsikamma, Cyclacanthia and Latrunculia) were characterized as well as a Mycale and Tethya rubra species. Latrunculid sponge microbiomes were significantly different from those associated with sympatric outlier sponge species and the surrounding environment. The bacterial communities associated with latrunculid sponges appear host specific with the conservation of two dominant bacterial symbionts which mirror the phylogeny of their host species. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Hilliar, Storm Hannah
- Date: 2018
- Subjects: Sponges South Africa Algoa Bay , Betaproteobacteria , Spirochaeta , Symbiosis , Bacterial communities
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62112 , vital:28128
- Description: Marine sponges belonging to the family Latrunculiidae are known for their production of cytotoxic pyrroloiminoquinone alkaloids and the South African coast provides a unique environment for the exploitation of these potent bioactive compounds. The isolation of structurally similar pyrroloiminoquinone compounds from unrelated, non poriferan sources has led to the suggestion that South African latrunculid pyrroloiminoquinones may be secondary metabolites produced by sponge associated microbial symbionts. Previous studies investigating the bacterial communities of South African latrunculid sponges have shown the conservation of distinct microbial populations with unusual bacterial taxa dominated by a novel betaproteobacterial and spirochete species. This study describes the further investigation into these associated bacterial communities, their conservation and sponge microbiome comparisons across spatial, temporal and environmental scales. The bacterial communities associated with seven latrunculid species representing three genera (Tsitsikamma, Cyclacanthia and Latrunculia) were characterized as well as a Mycale and Tethya rubra species. Latrunculid sponge microbiomes were significantly different from those associated with sympatric outlier sponge species and the surrounding environment. The bacterial communities associated with latrunculid sponges appear host specific with the conservation of two dominant bacterial symbionts which mirror the phylogeny of their host species. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Investigating the expression of three small open reading frames encoded on Helicoverpa armigera stunt virus RNA 1
- Authors: De Bruyn, Mart-Mari
- Date: 2017
- Subjects: Helicoverpa armigera , RNA viruses , Insects Viruses , Proteins
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59168 , vital:27448
- Description: The Helicoverpa armigera stunt virus (HaSV), belonging to the Family Alphatetraviridae (Genus: Omegatetravirus), is a non-enveloped insect virus encapsidating a bi-partite, positive-sense single-stranded RNA genome. RNA1 encodes the replicase, as well as three small open reading frames (ORFs) arranged in tandem, and overlapping with the 3’ end of the replicase ORF. These ORFs, designated p11, p15 and p8, encode putative proteins of unknown function. The p11 and p15 ORFs are conserved in the genome of the related Omegatetravirus, Dendrolimus punctatus tetravirus. In HaSV, the stop codon of p11 is followed immediately by the start of p15, whereas the stop of p15 and start of p8 are separated by a glycine intercodon. Furthermore, only p11 is known to have a recognizable Kozak sequence. The aim of this study was to determine the expression and function of these three small proteins in the HaSV infectious lifecycle. The authenticity of the viral cDNA sequence, encoding the three small ORFs, was validated by sequencing multiple cDNA clones of the relevant region in viral RNA (vRNA), purified from infectious HaSV particles. The sequence of all three ORFs was conserved in seven cDNA clones, while point mutations were observed in each of two remaining cDNA clones, suggesting that the ORFs were conserved in infectious virus. Polyclonal antisera were raised against a p11 peptide, and a recombinant p15-p8 fusion protein (p23) expressed and purified from Escherichia coli. The affinity of the anti-p23 antiserum was confirmed by western blot analysis, while that of the anti-p11 antiserum was confirmed using immunofluorescence microscopy, as attempted expression of recombinant p11 in E. coli appeared to be toxic. The antisera were used to detect expression of the small proteins in HaSV-infected H. armigera larvae by western blot analysis. A band migrating at approximately 34 kDa was detected by both antisera in infected larvae, absent in uninfected larvae, suggesting the expression of a p11-p15-p8 polyprotein. Protein bands of 11 kDa and 8 kDa were also detected by the anti-p11 and anti-p23 antisera, respectively. Bioinformatic analysis revealed that the polyprotein would be produced by a novel type of stop codon read-through, however the mechanism required for individual expression could not be definitively determined. The mechanism by which these ORFs are translated was further investigated by expressing p11-p15, tagged with FLAG and enhanced green flourescent protein (EGFP) at its amino- and carboxyl-termini respectively (FLAG-p11-p15-EGFP), in Spodoptera frugiperda (Sf9) cells detected by flourescence microscopy. Punctate structures were observed throughout the cytoplasm that were also detected with antiFLAG, anti-p11 and anti-p23 antisera, complementing results obtained in previous studies. Since p15 does not exhibit a strong recognizable Kozak like p11, the dependency of p15 expression on that of p11 was investigated by mutating this construct such that p15 occurred in a +1 frame to p11. Both EGFP and anti-p23 fluorescence was detected with the same cytoplasmic distribution as the unmutated construct, whereas nothing was detected by anti-FLAG and anti-p11. Preliminary results therefore suggested p15 may also be expressed as a discrete protein, independent of p11. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2017
- Authors: De Bruyn, Mart-Mari
- Date: 2017
- Subjects: Helicoverpa armigera , RNA viruses , Insects Viruses , Proteins
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59168 , vital:27448
- Description: The Helicoverpa armigera stunt virus (HaSV), belonging to the Family Alphatetraviridae (Genus: Omegatetravirus), is a non-enveloped insect virus encapsidating a bi-partite, positive-sense single-stranded RNA genome. RNA1 encodes the replicase, as well as three small open reading frames (ORFs) arranged in tandem, and overlapping with the 3’ end of the replicase ORF. These ORFs, designated p11, p15 and p8, encode putative proteins of unknown function. The p11 and p15 ORFs are conserved in the genome of the related Omegatetravirus, Dendrolimus punctatus tetravirus. In HaSV, the stop codon of p11 is followed immediately by the start of p15, whereas the stop of p15 and start of p8 are separated by a glycine intercodon. Furthermore, only p11 is known to have a recognizable Kozak sequence. The aim of this study was to determine the expression and function of these three small proteins in the HaSV infectious lifecycle. The authenticity of the viral cDNA sequence, encoding the three small ORFs, was validated by sequencing multiple cDNA clones of the relevant region in viral RNA (vRNA), purified from infectious HaSV particles. The sequence of all three ORFs was conserved in seven cDNA clones, while point mutations were observed in each of two remaining cDNA clones, suggesting that the ORFs were conserved in infectious virus. Polyclonal antisera were raised against a p11 peptide, and a recombinant p15-p8 fusion protein (p23) expressed and purified from Escherichia coli. The affinity of the anti-p23 antiserum was confirmed by western blot analysis, while that of the anti-p11 antiserum was confirmed using immunofluorescence microscopy, as attempted expression of recombinant p11 in E. coli appeared to be toxic. The antisera were used to detect expression of the small proteins in HaSV-infected H. armigera larvae by western blot analysis. A band migrating at approximately 34 kDa was detected by both antisera in infected larvae, absent in uninfected larvae, suggesting the expression of a p11-p15-p8 polyprotein. Protein bands of 11 kDa and 8 kDa were also detected by the anti-p11 and anti-p23 antisera, respectively. Bioinformatic analysis revealed that the polyprotein would be produced by a novel type of stop codon read-through, however the mechanism required for individual expression could not be definitively determined. The mechanism by which these ORFs are translated was further investigated by expressing p11-p15, tagged with FLAG and enhanced green flourescent protein (EGFP) at its amino- and carboxyl-termini respectively (FLAG-p11-p15-EGFP), in Spodoptera frugiperda (Sf9) cells detected by flourescence microscopy. Punctate structures were observed throughout the cytoplasm that were also detected with antiFLAG, anti-p11 and anti-p23 antisera, complementing results obtained in previous studies. Since p15 does not exhibit a strong recognizable Kozak like p11, the dependency of p15 expression on that of p11 was investigated by mutating this construct such that p15 occurred in a +1 frame to p11. Both EGFP and anti-p23 fluorescence was detected with the same cytoplasmic distribution as the unmutated construct, whereas nothing was detected by anti-FLAG and anti-p11. Preliminary results therefore suggested p15 may also be expressed as a discrete protein, independent of p11. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2017
Understanding the replication biology of Providence virus: elucidating the function of non-structural proteins
- Authors: Nakayinga, Ritah
- Date: 2014
- Subjects: Insects Viruses , Viruses Reproduction , Tombusviridae , RNA viruses , RNA polymerases
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/193930 , vital:45408
- Description: Tetraviruses are non-enveloped, small insect RNA viruses with a single stranded positive RNA genome that is either monopartite or bipartite. Providence virus (PrV) is the only member of the three tetravirus families with a viral replicase similar to the replicases of tombusviruses and umbraviruses. The principle aim of this thesis was to study PrV replication, focusing on subcellular localization and potential interactions between PrV replication proteins. The first objective of this study was to generate an anti-p104 antibody that does not cross-react with p40. Expression of the C-terminal portion of p104 in E. coli resulted in no detectable protein. Further expression in an insect cell based expression system resulted in the production of an insoluble protein. Attempts to improve protein solubility with a range of solubilization treatments were unsuccessful. Bioinformatic analysis was used to detect an antigenic region at the C-terminus of p104 and the peptide was used to raise anti-p104 antibodies. These antibodies did not detect native protein by western blot detection however they were used for immunoprecipitation. The establishment of the subcellular localization of PrV required two approaches; immunofluorescence in persistently infected Helicoverpa zea MG8 cells using antip40 and anti-dsRNA antibodies and the expression of EGFP-replicase fusion protein in Spodoptera frugiperda Sf9 cells. Replication of PrV was found to take place in cytosolic punctate structures. Co-immunoprecipitation experiments revealed that p40 self-interacts and interacts with p104. Bioinformatic analysis of PrV p104 suggests that the RdRp is similar to viral RdRps of the carmo-like supergroup II. Potential RNA binding regions are present within p104. A potential p40 interaction domain that shares hydrophilic and surface exposed properties with the TBSV p33 interaction domain is present. A putative arginine-rich region and disordered C-terminal region is present in p130. In conclusion, PrV p104 is the viral replicase. The resemblance of the expression strategy and putative functional domains with tombusviruses and umbraviruses suggest that PrV replication is related to the replication system of the tombusviruses and umbraviruses. This has led to propose that tetravirus replication strategies are diverse and raises questions on the origin and evolution of PrV. , Thesis (PhD) -- Faculty of Science, Biochemistry, Microbiology and Biotechnology, 2014
- Full Text:
- Date Issued: 2014
- Authors: Nakayinga, Ritah
- Date: 2014
- Subjects: Insects Viruses , Viruses Reproduction , Tombusviridae , RNA viruses , RNA polymerases
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/193930 , vital:45408
- Description: Tetraviruses are non-enveloped, small insect RNA viruses with a single stranded positive RNA genome that is either monopartite or bipartite. Providence virus (PrV) is the only member of the three tetravirus families with a viral replicase similar to the replicases of tombusviruses and umbraviruses. The principle aim of this thesis was to study PrV replication, focusing on subcellular localization and potential interactions between PrV replication proteins. The first objective of this study was to generate an anti-p104 antibody that does not cross-react with p40. Expression of the C-terminal portion of p104 in E. coli resulted in no detectable protein. Further expression in an insect cell based expression system resulted in the production of an insoluble protein. Attempts to improve protein solubility with a range of solubilization treatments were unsuccessful. Bioinformatic analysis was used to detect an antigenic region at the C-terminus of p104 and the peptide was used to raise anti-p104 antibodies. These antibodies did not detect native protein by western blot detection however they were used for immunoprecipitation. The establishment of the subcellular localization of PrV required two approaches; immunofluorescence in persistently infected Helicoverpa zea MG8 cells using antip40 and anti-dsRNA antibodies and the expression of EGFP-replicase fusion protein in Spodoptera frugiperda Sf9 cells. Replication of PrV was found to take place in cytosolic punctate structures. Co-immunoprecipitation experiments revealed that p40 self-interacts and interacts with p104. Bioinformatic analysis of PrV p104 suggests that the RdRp is similar to viral RdRps of the carmo-like supergroup II. Potential RNA binding regions are present within p104. A potential p40 interaction domain that shares hydrophilic and surface exposed properties with the TBSV p33 interaction domain is present. A putative arginine-rich region and disordered C-terminal region is present in p130. In conclusion, PrV p104 is the viral replicase. The resemblance of the expression strategy and putative functional domains with tombusviruses and umbraviruses suggest that PrV replication is related to the replication system of the tombusviruses and umbraviruses. This has led to propose that tetravirus replication strategies are diverse and raises questions on the origin and evolution of PrV. , Thesis (PhD) -- Faculty of Science, Biochemistry, Microbiology and Biotechnology, 2014
- Full Text:
- Date Issued: 2014
An investigation into the bacterial biosynthetic origins of bioactive natural products isolated from South African latrunculid sponges
- Authors: Waterworth, Samantha Che
- Date: 2018
- Subjects: Marine biodiversity , Metagenomics , Sponges Biotechnology , Spirochetes , Natural products Biotechnology
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/61826 , vital:28065
- Description: Several pyrroloiminoquinone alkaloids exhibiting cytotoxic, anti-tumour activity have been isolated from sponges within the Latrunculiidae family that are endemic to the South African coastline. Other, structurally similar pyrroloiminoquinone compounds have been isolated from geographically distant and phylogenetically distinct marine sponges, as well as terrestrial myxomycetes which suggested that sponge-associated bacteria may be the true biosynthetic origin of pyrroloiminoquinone compounds. Previous studies have shown that there is conservation of spirochete and betaproteobacterial species in the bacterial communities associated with South African Latrunculiidae sponges and it was proposed that these conserved bacteria represented candidate pyrroloiminoquinone-producers. This study aimed to confirm the conserved dominance of betaproteobacteria and spirochetes within bacterial communities associated with South African latrunculid sponges and employed a shotgun metagenomic approach to assess the functional and biosynthetic potential of associated microbiota in Tsitsikamma favus sponges. Clustering of assembled contigs revealed twenty-three putative bacterial genomes, of which, two were identified as representatives of the conserved betaproteobacteria and spirochete species previously identified in Tsitsikamma sponges. It was shown that the spirochete was most likely an obligate symbiont that benefitted the host sponge through possible defence against pathogenic bacteria and/or nutrient acquisition. The putative genome representing the conserved betaproteobacteria was found to be heavily contaminated and further sequencing is required to accurately resolve the genome for functional characterization. Several biosynthetic gene clusters were identified and demonstrated the bioactive potential of Tsitsikamma favus-associated bacteria. A biosynthetic gene cluster was identified on an unclustered contig that included several genetic features that were indicative of possible pyrroloiminoquinone production.
- Full Text:
- Date Issued: 2018
- Authors: Waterworth, Samantha Che
- Date: 2018
- Subjects: Marine biodiversity , Metagenomics , Sponges Biotechnology , Spirochetes , Natural products Biotechnology
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/61826 , vital:28065
- Description: Several pyrroloiminoquinone alkaloids exhibiting cytotoxic, anti-tumour activity have been isolated from sponges within the Latrunculiidae family that are endemic to the South African coastline. Other, structurally similar pyrroloiminoquinone compounds have been isolated from geographically distant and phylogenetically distinct marine sponges, as well as terrestrial myxomycetes which suggested that sponge-associated bacteria may be the true biosynthetic origin of pyrroloiminoquinone compounds. Previous studies have shown that there is conservation of spirochete and betaproteobacterial species in the bacterial communities associated with South African Latrunculiidae sponges and it was proposed that these conserved bacteria represented candidate pyrroloiminoquinone-producers. This study aimed to confirm the conserved dominance of betaproteobacteria and spirochetes within bacterial communities associated with South African latrunculid sponges and employed a shotgun metagenomic approach to assess the functional and biosynthetic potential of associated microbiota in Tsitsikamma favus sponges. Clustering of assembled contigs revealed twenty-three putative bacterial genomes, of which, two were identified as representatives of the conserved betaproteobacteria and spirochete species previously identified in Tsitsikamma sponges. It was shown that the spirochete was most likely an obligate symbiont that benefitted the host sponge through possible defence against pathogenic bacteria and/or nutrient acquisition. The putative genome representing the conserved betaproteobacteria was found to be heavily contaminated and further sequencing is required to accurately resolve the genome for functional characterization. Several biosynthetic gene clusters were identified and demonstrated the bioactive potential of Tsitsikamma favus-associated bacteria. A biosynthetic gene cluster was identified on an unclustered contig that included several genetic features that were indicative of possible pyrroloiminoquinone production.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »