Photosensitizer, pH sensing and optical limiting properties of BODIPY dyes
- Authors: May, Aviwe Khanya
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Halogenation , Photochemotherapy , Bromination , Photosensitizing compounds , Nonlinear optics , BODIPY dyes
- Language: English
- Type: text , Thesis , Masters , MA
- Identifier: http://hdl.handle.net/10962/63964 , vital:28515
- Description: A series of BODIPY dyes have been successfully synthesised and structurally characterised to examine the effect of halogenation at the 2,6-positions and the introduction of styryl and vinylene groups at the 3,5-positions. The photophysical properties were studied, to assess the effect of the enhancement of the rate of intersystem crossing through halogenation on the fluorescence properties and the generation of reactive oxygen species. This is important in the assessment of the suitability of applying these molecules as photosensitizer dyes for photodynamic therapy and photodynamic antimicrobial chemotherapy. Upon bromination, the dyes showed moderately high singlet oxygen quantum yields. The inclusion of BODIPY dyes into cyclodextrins was explored since it makes them water soluble and hence suitable for biomedical applications, but no singlet oxygen was detected in aqueous media for the inclusion complexes. In order to red-shift the main spectral band of the BODIPY dyes into the therapeutic window, styryl groups were introduced at the 3,5-positions via a modified Knoevenagel condensation reaction. Since the main spectral band lies well above 532 nm, the second harmonic of the Nd:YAG laser, there is relatively weak absorbance at this wavelength. The 3,5-distyryl and 3,5-divinylene BODIPY dyes were assessed for their potential utility for application in nonlinear optics (NLO), and they demonstrated typical nonlinear absorption behaviour characterised by reverse saturable absorption (RSA) in z-scan measurements. Furthermore, the dyes possess excellent optical limiting parameters, such as their third-order suspectibility and hyperpolarizability values, in a wide range of solvents. One dye containing dimethylamino moieties on styryl groups attached at the 3,5-positions was assessed for potential application as an on/off fluorescence sensor. The dye proved to be successful, since intramolecular charge transfer in the S1 state was eliminated in the presence of acid and this results in a fluorescence “turn on” effect. This process was found to be reversible with the addition of a base.
- Full Text:
- Date Issued: 2018
- Authors: May, Aviwe Khanya
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Halogenation , Photochemotherapy , Bromination , Photosensitizing compounds , Nonlinear optics , BODIPY dyes
- Language: English
- Type: text , Thesis , Masters , MA
- Identifier: http://hdl.handle.net/10962/63964 , vital:28515
- Description: A series of BODIPY dyes have been successfully synthesised and structurally characterised to examine the effect of halogenation at the 2,6-positions and the introduction of styryl and vinylene groups at the 3,5-positions. The photophysical properties were studied, to assess the effect of the enhancement of the rate of intersystem crossing through halogenation on the fluorescence properties and the generation of reactive oxygen species. This is important in the assessment of the suitability of applying these molecules as photosensitizer dyes for photodynamic therapy and photodynamic antimicrobial chemotherapy. Upon bromination, the dyes showed moderately high singlet oxygen quantum yields. The inclusion of BODIPY dyes into cyclodextrins was explored since it makes them water soluble and hence suitable for biomedical applications, but no singlet oxygen was detected in aqueous media for the inclusion complexes. In order to red-shift the main spectral band of the BODIPY dyes into the therapeutic window, styryl groups were introduced at the 3,5-positions via a modified Knoevenagel condensation reaction. Since the main spectral band lies well above 532 nm, the second harmonic of the Nd:YAG laser, there is relatively weak absorbance at this wavelength. The 3,5-distyryl and 3,5-divinylene BODIPY dyes were assessed for their potential utility for application in nonlinear optics (NLO), and they demonstrated typical nonlinear absorption behaviour characterised by reverse saturable absorption (RSA) in z-scan measurements. Furthermore, the dyes possess excellent optical limiting parameters, such as their third-order suspectibility and hyperpolarizability values, in a wide range of solvents. One dye containing dimethylamino moieties on styryl groups attached at the 3,5-positions was assessed for potential application as an on/off fluorescence sensor. The dye proved to be successful, since intramolecular charge transfer in the S1 state was eliminated in the presence of acid and this results in a fluorescence “turn on” effect. This process was found to be reversible with the addition of a base.
- Full Text:
- Date Issued: 2018
The preparation of BODIPY and porphyrin dyes and their cyclodextrin inclusion complexes and Pluronic® F-127 encapsulation micelles for use in PDT and PACT
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
- Authors: Molupe, Nthabeleng
- Date: 2019
- Subjects: Dyes and dyeing -- Chemistry , Drug delivery systems , Fluorescence spectroscopy , Cancer -- Photochemotherapy , Photosensitizing compounds -- Therapeutic use , Cyclodextrins -- Biotechnology , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/117574 , vital:34528
- Description: Several novel BODIPY dyes ((4,4′-difluoro-1,7-tetramethyl-3,5-(3-dithiophene)-2,6-diiodo-8-(4-dimethylamino)-4-bora-3a,4a-diaza-s-indacene (1c), 4,4′-difluoro-1,7-tetramethyl-3,5-(3 dithiophene)-2,6-diiodo-8-(4-methylthio)-4-bora-3a,4a-diaza-s-indacene (3c) and 4,4′-difluoro-1,7-tetramethyl-3,5-(4-dibenzyloxybenzene)-2,6-diiodo-8-(4-methylbenzoate)-4 bora-3a,4a-diaza-s-indacene (4c)) and porphyrins (tetraacenaphthylporphyrin (7a) and Sn(IV) tetraacenaphthylporphyrin (7b)) were synthesized and characterized. Previously reported BODIPY dyes (4,4′-difluoro-1,7-tetramethyl-3,5-(2-dihydroxy)-2,6-diiodo-8-(4-bromo)-4-bora-3a,4a-diaza-s-indacene (5) and 4,4′-difluoro-1,7-tetramethyl-3,5-(2-dithiophene)-2,6-diiodo-8-(phenyl)-4-bora-3a,4a-diaza-s-indacene (6)) were also used. Pluronic® F-127 and cyclodextrins were used as solubilizing drug delivery agents for the synthesized BODIPY dyes. The encapsulation of BODIPY dyes with Pluronic® F-127 micelles improved the water solubility of the BODIPY 5. Further modification of Pluronic® F-127 by coating with folate-functionalized chitosan for targeted delivery of BODIPY 1c and 6 was explored. The BODIPY dyes and their encapsulation complexes exhibited significant inhibition of human MCF-7 breast cancer cell growth. When cyclodextrins were used as nanocarriers, the inclusion complexes of BODIPY 4c with mβCD were found to enhance the water-solubility of the dye. Greater photoinactivation of Staphylococcus aureus was observed for the inclusion complexes when compared to the effect of solutions of non-complexed BODIPY 4c. The cyclodextrin inclusion complexes of porphyrin 7b with mβCD were also found to enhance the water-solubility of 7b. When the photodynamic effect was evaluated, solutions of the porphyrin alone and their inclusion complexes were found to have significant photodynamic effects against human MCF-7 breast cancer cells.
- Full Text:
- Date Issued: 2019
Donor-acceptor effects on the optical limiting properties of BODIPY dyes
- Authors: Hlatshwayo, Zweli Thabiso
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Photosensitizing compounds -- Therapeutic use , Cancer -- Photochemotherapy , Upconversion nanoparticles (UCNPs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63368 , vital:28397
- Description: The main objectives of the research described in this thesis were firstly to synthesize and characterize a series of structurally related BODIPY dyes that are potentially suitable for use in applications, secondly to conjugate a carboxylic acid substituted BODIPY dye to amine-functionalized upconversion nanoparticles (UCNPs) through an amide bond to enable singlet oxygen production upon irradiation at 978 nm in the biological window for tissue penetration for biomedical applications, and thirdly to compare the nonlinear optical (NLO) properties of various BODIPY dyes to determine whether push-pull effects enhance their utility for optical limiting (OL) applications. Halogenated BODIPY cores with high singlet oxygen quantum yields were prepared, which absorb in the green portion of the visible region and making it difficult to treat deeper skin tumors in the context of photodynamic therapy (PDT) applications. UCNPs generally absorb in the near-infrared (NIR) region (978 nm), and this is advantageous because, this is where absorption by water, cells and tissues is minimized. NaYF4: Yb/Er/Gd UCNPs were synthesized, amine functionalized and successfully conjugated to a halogenated carboxylic acid functionalized BODIPY. This allowed for favorable Förster resonance energy transfer (FRET) since one of the emission wavelengths of the NaYF4: Yb/Er/Gd UCNPs overlaps with the main absorption band of the BODIPY at 540 nm. The conjugate was irradiated at 978 nm, but instability of the BODIPY dye was observed, which made singlet oxygen quantum yield determination impossible. An enhanced singlet oxygen quantum yield value was observed upon irradiation of the conjugate at 540 nm, suggesting that further studies of this system are warranted. The OL properties of BODIPY cores and dyes, which are π-extended at the 3,5-positions with styryl groups, were studied in a series of different organic solvents at 532 nm by using the z-scan technique on a nanosecond timescale. Many of the dyes were used to compare the effects of introducing electron donor and acceptor groups on the OL properties of the dyes. The dipole moments of these dyes were found to correlate with the OL response. The OL results indicate that BODIPY dyes with push-pull properties, which are π-extended at the 3,5-positions with styryl groups, can be considered as viable candidates for use in OL applications. The studies sought to establish the effect of ESA in the triplet manifold as compared to the singlet manifold in as far as the OL response is concerned. The most promising dyes were embedded in polystyrene thin films, and this was found to significantly enhance their OL properties.
- Full Text:
- Date Issued: 2018
- Authors: Hlatshwayo, Zweli Thabiso
- Date: 2018
- Subjects: Dyes and dyeing -- Chemistry , Photosensitizing compounds -- Therapeutic use , Cancer -- Photochemotherapy , Upconversion nanoparticles (UCNPs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63368 , vital:28397
- Description: The main objectives of the research described in this thesis were firstly to synthesize and characterize a series of structurally related BODIPY dyes that are potentially suitable for use in applications, secondly to conjugate a carboxylic acid substituted BODIPY dye to amine-functionalized upconversion nanoparticles (UCNPs) through an amide bond to enable singlet oxygen production upon irradiation at 978 nm in the biological window for tissue penetration for biomedical applications, and thirdly to compare the nonlinear optical (NLO) properties of various BODIPY dyes to determine whether push-pull effects enhance their utility for optical limiting (OL) applications. Halogenated BODIPY cores with high singlet oxygen quantum yields were prepared, which absorb in the green portion of the visible region and making it difficult to treat deeper skin tumors in the context of photodynamic therapy (PDT) applications. UCNPs generally absorb in the near-infrared (NIR) region (978 nm), and this is advantageous because, this is where absorption by water, cells and tissues is minimized. NaYF4: Yb/Er/Gd UCNPs were synthesized, amine functionalized and successfully conjugated to a halogenated carboxylic acid functionalized BODIPY. This allowed for favorable Förster resonance energy transfer (FRET) since one of the emission wavelengths of the NaYF4: Yb/Er/Gd UCNPs overlaps with the main absorption band of the BODIPY at 540 nm. The conjugate was irradiated at 978 nm, but instability of the BODIPY dye was observed, which made singlet oxygen quantum yield determination impossible. An enhanced singlet oxygen quantum yield value was observed upon irradiation of the conjugate at 540 nm, suggesting that further studies of this system are warranted. The OL properties of BODIPY cores and dyes, which are π-extended at the 3,5-positions with styryl groups, were studied in a series of different organic solvents at 532 nm by using the z-scan technique on a nanosecond timescale. Many of the dyes were used to compare the effects of introducing electron donor and acceptor groups on the OL properties of the dyes. The dipole moments of these dyes were found to correlate with the OL response. The OL results indicate that BODIPY dyes with push-pull properties, which are π-extended at the 3,5-positions with styryl groups, can be considered as viable candidates for use in OL applications. The studies sought to establish the effect of ESA in the triplet manifold as compared to the singlet manifold in as far as the OL response is concerned. The most promising dyes were embedded in polystyrene thin films, and this was found to significantly enhance their OL properties.
- Full Text:
- Date Issued: 2018
Improved singlet oxygen generation by a novel bodipy dye and a study of upconverison nanoparticles mixed with a functionalized bodipy compound
- Wildervanck, Martijn Johannes
- Authors: Wildervanck, Martijn Johannes
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3718 , vital:20538
- Description: This research explores the use of the versatile 4,4-difluoro-4-boro-3a,4a-diaza-s-indacene (BODIPY) dyes and the modification of their spectroscopic properties. The synthesis of a tetramethyl-BODIPY bearing a sterically hindered meso-phenyl ring with an ethynyl functional group at the para-position was compared to that of its freely rotating counterpart with no methyl substituents on the BODIPY core, with the fluorescence properties in particular proving to be markedly different. These phenyl-ethynyl-substituted BODIPYs were used as the starting materials for the synthesis of novel BODIPY dyes for sensor applications via Sonogashira coupling reactions at the ethynyl position, but this resulted instead in the serendipitous synthesis of a novel BODIPY dimer in which the para-positions of the meso-phenyl rings are linked by a diethynyl bridge. Following iodination at the 2, 6-positions, the dimer was found to have a singlet oxygen quantum yield of 0.88, compared to the value of 0.86 that was obtained for the analogous monomer. Since the εmax values for the main spectral bands of the dimers are significantly higher, the compounds may be of interest for singlet oxygen generation applications. A second study was carried out on the interaction between methyl ester functionalized BODIPY dyes and upconversion nanoparticles (UCNPs) to explore the possible use of BODIPY-UCNP conjugates in biomedical applications. The singlet oxygen generation properties of the BODIPY were tested following iodination at the 2, 6-positions, a singlet oxygen quantum yield value of 0.86 was obtained. Three sets of oleate capped UCNPs were synthesized with different diameters and were rendered water dispersible with the addition of a silica shell. The necessary scaffolding for conjugation to the BODIPY was provided by amine groups following functionalization of this shell. All of the sets of oleate capped and silica coated UCNPs were characterized by transmission electron microscopy (TEM) and X-ray diffractometry (XRD) and their emission properties were studied upon excitation at 978 nm with a diode laser with a Picoquant Fluotime 300 spectrophotometer that enables the measurement of anti-Stokes emission. The potential utility of UCNP-BODIPY conjugates for singlet oxygen applications, such as PDT, was then assessed.
- Full Text:
- Date Issued: 2016
- Authors: Wildervanck, Martijn Johannes
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3718 , vital:20538
- Description: This research explores the use of the versatile 4,4-difluoro-4-boro-3a,4a-diaza-s-indacene (BODIPY) dyes and the modification of their spectroscopic properties. The synthesis of a tetramethyl-BODIPY bearing a sterically hindered meso-phenyl ring with an ethynyl functional group at the para-position was compared to that of its freely rotating counterpart with no methyl substituents on the BODIPY core, with the fluorescence properties in particular proving to be markedly different. These phenyl-ethynyl-substituted BODIPYs were used as the starting materials for the synthesis of novel BODIPY dyes for sensor applications via Sonogashira coupling reactions at the ethynyl position, but this resulted instead in the serendipitous synthesis of a novel BODIPY dimer in which the para-positions of the meso-phenyl rings are linked by a diethynyl bridge. Following iodination at the 2, 6-positions, the dimer was found to have a singlet oxygen quantum yield of 0.88, compared to the value of 0.86 that was obtained for the analogous monomer. Since the εmax values for the main spectral bands of the dimers are significantly higher, the compounds may be of interest for singlet oxygen generation applications. A second study was carried out on the interaction between methyl ester functionalized BODIPY dyes and upconversion nanoparticles (UCNPs) to explore the possible use of BODIPY-UCNP conjugates in biomedical applications. The singlet oxygen generation properties of the BODIPY were tested following iodination at the 2, 6-positions, a singlet oxygen quantum yield value of 0.86 was obtained. Three sets of oleate capped UCNPs were synthesized with different diameters and were rendered water dispersible with the addition of a silica shell. The necessary scaffolding for conjugation to the BODIPY was provided by amine groups following functionalization of this shell. All of the sets of oleate capped and silica coated UCNPs were characterized by transmission electron microscopy (TEM) and X-ray diffractometry (XRD) and their emission properties were studied upon excitation at 978 nm with a diode laser with a Picoquant Fluotime 300 spectrophotometer that enables the measurement of anti-Stokes emission. The potential utility of UCNP-BODIPY conjugates for singlet oxygen applications, such as PDT, was then assessed.
- Full Text:
- Date Issued: 2016
Synthesis and physicochemical evaluation of a series of boron dipyrromethene dye derivatives for potential utility in antimicrobial photodynamic therapy and nonlinear optics
- Authors: Kubheka, Gugu Patience
- Date: 2017
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Nonlinear optics , BODIPY
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4776 , vital:20723
- Description: A series of new BODIPY dye derivatives have been synthesized and characterized using various characterization tools such as 1H-NMR, MALDI-TOF mass spectrometry, FT-IR, UV-visible spectrophotometry and elemental analysis. The aniline-substituted BODIPY derivative was further coordinated with gold nanorods and the characterization was achieved by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS).In addition to this dye, quaternized BODIPY dyes were also synthesized and investigated for their potential utility as photosentitizers in antimicrobial photodynamic therapy (APDT).BODIPY dyes with pyrene substituted styryl groups were embedded in polymer thin film using poly(bisphenol A carbonate) (PBC) to study their optical limiting properties. The optical limiting values of these BODIPY dyes once embedded in thin films were found to be greatly improved and the limiting intensityof each film was well below the maximum threshold which is set to be 0.95 J.cm-². The physicochemical properties and NLO parameters of all of the synthesized dyes were investigated.
- Full Text:
- Date Issued: 2017
- Authors: Kubheka, Gugu Patience
- Date: 2017
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Nonlinear optics , BODIPY
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4776 , vital:20723
- Description: A series of new BODIPY dye derivatives have been synthesized and characterized using various characterization tools such as 1H-NMR, MALDI-TOF mass spectrometry, FT-IR, UV-visible spectrophotometry and elemental analysis. The aniline-substituted BODIPY derivative was further coordinated with gold nanorods and the characterization was achieved by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS).In addition to this dye, quaternized BODIPY dyes were also synthesized and investigated for their potential utility as photosentitizers in antimicrobial photodynamic therapy (APDT).BODIPY dyes with pyrene substituted styryl groups were embedded in polymer thin film using poly(bisphenol A carbonate) (PBC) to study their optical limiting properties. The optical limiting values of these BODIPY dyes once embedded in thin films were found to be greatly improved and the limiting intensityof each film was well below the maximum threshold which is set to be 0.95 J.cm-². The physicochemical properties and NLO parameters of all of the synthesized dyes were investigated.
- Full Text:
- Date Issued: 2017
Azadipyrromethenes for applications in photodynamic antimicrobial chemotherapy, photodynamic therapy and optical limiting
- Authors: Dubazana, Nadine
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Staphylococcus aureus , Nonlinear optics , Azadipyrromethenes , BODIPY
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166150 , vital:41333
- Description: Azadipyrromethenes, azaBODIPYs and zinc azadipyrromethene complexes were prepared and characterised to examine the effect on their photophysical properties of incorporating phenyl groups at the 1,3,5,7-positions with electron-donating and withdrawing groups at the para-positions. To enhance their ability to generate singlet oxygen, appropriate structural modifications were made through the addition of a Zn(II) ion or halogenation at the 2,6 positions. In vitro photodynamic therapy (PDT) studies targeting MCF-7 human breast cancer cells were carried out. To evaluate and understand the effectiveness of the dyes as photosensitisers, cellular uptake, phototoxicity and the half-maximal inhibitory concentration (IC50) values were analysed. Photodynamic antimicrobial chemotherapy (PACT) studies were also carried out to study the effectiveness of the dyes against Staphylococcus aureus (S. aureus). Dyes with donor-π-acceptor (D-π-A) properties were synthesised and tested against the second harmonic of the Nd:YAG laser in optical limiting (OL) studies. The second-order hyperpolarisability, third-order susceptibility and nonlinear absorption coefficient values were determined. The results suggest that 1,3,5,7-azaBODIPY dyes may be less suitable for use in this context than analogous D-π-A 3,5-distyrylBODIPY dyes. Molecular modelling was carried out to identify the structure-property relationships of the synthesised dyes by analysing trends in the energies of the frontier molecular orbitals (MOs) and spectroscopic properties.
- Full Text:
- Date Issued: 2020
- Authors: Dubazana, Nadine
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Staphylococcus aureus , Nonlinear optics , Azadipyrromethenes , BODIPY
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166150 , vital:41333
- Description: Azadipyrromethenes, azaBODIPYs and zinc azadipyrromethene complexes were prepared and characterised to examine the effect on their photophysical properties of incorporating phenyl groups at the 1,3,5,7-positions with electron-donating and withdrawing groups at the para-positions. To enhance their ability to generate singlet oxygen, appropriate structural modifications were made through the addition of a Zn(II) ion or halogenation at the 2,6 positions. In vitro photodynamic therapy (PDT) studies targeting MCF-7 human breast cancer cells were carried out. To evaluate and understand the effectiveness of the dyes as photosensitisers, cellular uptake, phototoxicity and the half-maximal inhibitory concentration (IC50) values were analysed. Photodynamic antimicrobial chemotherapy (PACT) studies were also carried out to study the effectiveness of the dyes against Staphylococcus aureus (S. aureus). Dyes with donor-π-acceptor (D-π-A) properties were synthesised and tested against the second harmonic of the Nd:YAG laser in optical limiting (OL) studies. The second-order hyperpolarisability, third-order susceptibility and nonlinear absorption coefficient values were determined. The results suggest that 1,3,5,7-azaBODIPY dyes may be less suitable for use in this context than analogous D-π-A 3,5-distyrylBODIPY dyes. Molecular modelling was carried out to identify the structure-property relationships of the synthesised dyes by analysing trends in the energies of the frontier molecular orbitals (MOs) and spectroscopic properties.
- Full Text:
- Date Issued: 2020
Synthesis and photophysical studies of crown ether-bodipy dyes and the fabrication of bodipy embedded fluorescent nanofibers
- Authors: Stone, Justin
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4953 , vital:20746
- Description: This study has three major objectives: 1) to synthesize a series of structurally related BODIPY dyes, 2) to fabricate BODIPY embedded electrospun nanofibers, and 3) to investigate and characterize the photophysical properties of all synthesized BODIPY dyes with a special focus on their ability to generate singlet oxygen. This thesis first explores the acid catalysed condensation reaction to produce two structurally analogous meso-substituted BODIPY dyes based on cuminaldehyde and 4-dimethylaminobenzaldehdye. In order to enhance the rate of ISC and promote the generation of reactive oxygen species bromine atoms were then attached to the BODIPY 2,6-positions. These BODIPY dyes were then embedded in a polystyrene solution and electrospun into nanofibers. The resulting nanofibers were found to be highly fluorescent, but were no longer able to generate singlet oxygen. Ion-sensitive BODIPYs were prepared from the dibrominated BODIPY dyes by employing a modified Knoevenagel condensation reaction to form a styryl bond with 4’-formylbenzo-15-crown-5 at the 3,5-position of the BODIPY core. Changes in the morphology and position of the absorption and emission spectra of these crown ether-styryl BODIPY dyes were observed in the presence of sodium ions. These results imply that crown ether-substituted BODIPY dyes could function as ion sensors.
- Full Text:
- Date Issued: 2017
- Authors: Stone, Justin
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4953 , vital:20746
- Description: This study has three major objectives: 1) to synthesize a series of structurally related BODIPY dyes, 2) to fabricate BODIPY embedded electrospun nanofibers, and 3) to investigate and characterize the photophysical properties of all synthesized BODIPY dyes with a special focus on their ability to generate singlet oxygen. This thesis first explores the acid catalysed condensation reaction to produce two structurally analogous meso-substituted BODIPY dyes based on cuminaldehyde and 4-dimethylaminobenzaldehdye. In order to enhance the rate of ISC and promote the generation of reactive oxygen species bromine atoms were then attached to the BODIPY 2,6-positions. These BODIPY dyes were then embedded in a polystyrene solution and electrospun into nanofibers. The resulting nanofibers were found to be highly fluorescent, but were no longer able to generate singlet oxygen. Ion-sensitive BODIPYs were prepared from the dibrominated BODIPY dyes by employing a modified Knoevenagel condensation reaction to form a styryl bond with 4’-formylbenzo-15-crown-5 at the 3,5-position of the BODIPY core. Changes in the morphology and position of the absorption and emission spectra of these crown ether-styryl BODIPY dyes were observed in the presence of sodium ions. These results imply that crown ether-substituted BODIPY dyes could function as ion sensors.
- Full Text:
- Date Issued: 2017
BODIPY dyes for application in the photo-oxidation of pollutants, photodynamic antimicrobial chemotherapy, and nonlinear optics
- Authors: Kelechi, Lebechi Augustus
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Fluorescent probes , Fluorescence spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140298 , vital:37859
- Description: The synthesis and structural characterization of a series of BODIPY dyes to analyze both the effects of halogenations at the 2,6-positions and the introduction of styryl groups at the 3,5-positions. The photophysical properties of these dyes were investigated to determine their suitability as singlet oxygen-generating photosensitiser dyes for application in photocatalytic degradation of azo dyes and in photodynamic antimicrobial chemotherapy (PACT). Upon halogenation, the dyes showed high to moderate singlet oxygen quantum yields. The potential utility of electrospun polystyrene (PS) nanofibres embedded with halogenated BODIPY dyes for the photocatalytic degradation of Orange G and Methyl Orange from textile industry effluents were investigated. A comparison of the singlet oxygen quantum yield of the BODIPY dyes in solution and when embedded in the PS nanofibres support demonstrates that its photosensitiser properties are maintained in the nanofibre mats. The photocatalytic degradation properties of the PS nanofibres for Orange G and Methyl Orange were determined by using a 530 nm and 660 nm light-emitting diodes. The rate of photodegradation increases with both the Orange G and Methyl Orange concentrations and follows pseudo-first-order kinetics. The PACT activities of brominated BODIPYs on Escherichia coli and Staphylococcus aureus were investigated. Log reduction values of over 9 were obtained during the photoinactivation of Staphylococcus aureus. To be able to red-shift the main spectral band of the BODIPY dyes into the therapeutic window, styryl groups were introduced at the 3,5-positions through a modified Knoevenagel condensation reaction. Because the red-shifted spectral band lies above 532 nm, the second harmonic of the Nd:YAG laser, there is very minute absorption at this wavelength. One of the novel brominated BODIPY dyes was investigated for its potential utility as optical limiting materials in nonlinear optics (NLO), and the dyes demonstrated typical nonlinear absorption behaviour characterised by reverse saturable absorption (RSA) in Z-scan measurements. Excellent optical limiting parameters were obtained for third-order susceptibility and hyperpolarisability.
- Full Text:
- Date Issued: 2020
- Authors: Kelechi, Lebechi Augustus
- Date: 2020
- Subjects: Dyes and dyeing -- Chemistry , Fluorescent probes , Fluorescence spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140298 , vital:37859
- Description: The synthesis and structural characterization of a series of BODIPY dyes to analyze both the effects of halogenations at the 2,6-positions and the introduction of styryl groups at the 3,5-positions. The photophysical properties of these dyes were investigated to determine their suitability as singlet oxygen-generating photosensitiser dyes for application in photocatalytic degradation of azo dyes and in photodynamic antimicrobial chemotherapy (PACT). Upon halogenation, the dyes showed high to moderate singlet oxygen quantum yields. The potential utility of electrospun polystyrene (PS) nanofibres embedded with halogenated BODIPY dyes for the photocatalytic degradation of Orange G and Methyl Orange from textile industry effluents were investigated. A comparison of the singlet oxygen quantum yield of the BODIPY dyes in solution and when embedded in the PS nanofibres support demonstrates that its photosensitiser properties are maintained in the nanofibre mats. The photocatalytic degradation properties of the PS nanofibres for Orange G and Methyl Orange were determined by using a 530 nm and 660 nm light-emitting diodes. The rate of photodegradation increases with both the Orange G and Methyl Orange concentrations and follows pseudo-first-order kinetics. The PACT activities of brominated BODIPYs on Escherichia coli and Staphylococcus aureus were investigated. Log reduction values of over 9 were obtained during the photoinactivation of Staphylococcus aureus. To be able to red-shift the main spectral band of the BODIPY dyes into the therapeutic window, styryl groups were introduced at the 3,5-positions through a modified Knoevenagel condensation reaction. Because the red-shifted spectral band lies above 532 nm, the second harmonic of the Nd:YAG laser, there is very minute absorption at this wavelength. One of the novel brominated BODIPY dyes was investigated for its potential utility as optical limiting materials in nonlinear optics (NLO), and the dyes demonstrated typical nonlinear absorption behaviour characterised by reverse saturable absorption (RSA) in Z-scan measurements. Excellent optical limiting parameters were obtained for third-order susceptibility and hyperpolarisability.
- Full Text:
- Date Issued: 2020
BODIPY and porphyrin dyes for direct glucose sensing and optical limiting applications
- Authors: Ndebele, Nobuhle
- Date: 2019
- Subjects: Boron compounds , Boric acid , Porphyrins , Dyes and dying -- Chemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/97221 , vital:31412
- Description: A series of BODIPY dyes functionalised with boronic acid in the 3,5-positions were successfully synthesised and characterised by using various analytical techniques. The dyes were prepared through a slight modification of the conventional acid catalysed condensation method. Phenylboronic acid moieties were added as styryl groups at the 3,5-positions of the 1,3,5,7-tetrametylBODIPY cores using a modified Knoevengal condensation method. The addition of the styryls resulted in the main absorption band of the dyes red-shifting to the 630−650 nm region. The photophysical and electrochemical properties of these dyes were studied to determine whether the dyes are suitable for use in the fluorescent, colourimetric and electrochemical detection of glucose. Boronic acid moieties were added as bioreceptor recognition elements because they have an affinity for carbohydrates and therefore would be able to bind and “detect” glucose. The series of BODIPY dyes did not show a “turn-on” fluorescence effect upon addition with glucose at the physiological pH. This was attributed on the basis of molecular modelling to the absence of an MO localised on the boronic-acid-substituted styryl moieties that lie close in energy to the HOMO and LUMO that facilitates the formation of an intramolecular charge transfer state. However, colourimetric changes that are visible to the naked eye are observed at basic pH when glucose was added to the dye solutions. The dyes exhibited favourable electrochemical behaviour and were able to detect glucose directly in this context when glassy carbon electrodes are modified through the drop dry method. A series of Sn(IV) porphyrins with thienyl and phenyl groups at the meso-positions were successfully synthesised and characterised. Pyridine and tetrabutyl axial ligands were added to the porphyrins to limit aggregation. The optical limiting properties of these porphyrins and three styrylated BODIPY dyes were studied in benzene and dichloromethane. Dyes were also embedded in polystyrene and studied as thin films to further gauge their suitability for use in optical limiting applications. Second-order hyperpolarizability, third-order susceptibly, non-linear absorption with reversible saturable absorption and the optical limiting threshold, were the parameters studied. Three of the four porphyrins and the three styrylated BODIPY dyes showed favourable optical limiting behaviour, which was further enhanced when the dyes are embedded in polymer thin films.
- Full Text:
- Date Issued: 2019
- Authors: Ndebele, Nobuhle
- Date: 2019
- Subjects: Boron compounds , Boric acid , Porphyrins , Dyes and dying -- Chemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/97221 , vital:31412
- Description: A series of BODIPY dyes functionalised with boronic acid in the 3,5-positions were successfully synthesised and characterised by using various analytical techniques. The dyes were prepared through a slight modification of the conventional acid catalysed condensation method. Phenylboronic acid moieties were added as styryl groups at the 3,5-positions of the 1,3,5,7-tetrametylBODIPY cores using a modified Knoevengal condensation method. The addition of the styryls resulted in the main absorption band of the dyes red-shifting to the 630−650 nm region. The photophysical and electrochemical properties of these dyes were studied to determine whether the dyes are suitable for use in the fluorescent, colourimetric and electrochemical detection of glucose. Boronic acid moieties were added as bioreceptor recognition elements because they have an affinity for carbohydrates and therefore would be able to bind and “detect” glucose. The series of BODIPY dyes did not show a “turn-on” fluorescence effect upon addition with glucose at the physiological pH. This was attributed on the basis of molecular modelling to the absence of an MO localised on the boronic-acid-substituted styryl moieties that lie close in energy to the HOMO and LUMO that facilitates the formation of an intramolecular charge transfer state. However, colourimetric changes that are visible to the naked eye are observed at basic pH when glucose was added to the dye solutions. The dyes exhibited favourable electrochemical behaviour and were able to detect glucose directly in this context when glassy carbon electrodes are modified through the drop dry method. A series of Sn(IV) porphyrins with thienyl and phenyl groups at the meso-positions were successfully synthesised and characterised. Pyridine and tetrabutyl axial ligands were added to the porphyrins to limit aggregation. The optical limiting properties of these porphyrins and three styrylated BODIPY dyes were studied in benzene and dichloromethane. Dyes were also embedded in polystyrene and studied as thin films to further gauge their suitability for use in optical limiting applications. Second-order hyperpolarizability, third-order susceptibly, non-linear absorption with reversible saturable absorption and the optical limiting threshold, were the parameters studied. Three of the four porphyrins and the three styrylated BODIPY dyes showed favourable optical limiting behaviour, which was further enhanced when the dyes are embedded in polymer thin films.
- Full Text:
- Date Issued: 2019
BODIPY dyes for singlet oxygen and optical limiting applications
- Authors: Harris, Jessica
- Date: 2018
- Subjects: Photosensitizing compounds , Active oxygen -- Physiological effect , Photochemotherapy , Cancer -- Treatment , Nonlinear optics , BODIPY (Boron-dipyrromethene)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58002 , vital:27014
- Description: A series of structurally related BODIPY dyes were synthesised and characterised. Their photophysical properties were studied in order to determine whether they would be suitable candidates for use as photosensitisers in the photodynamic therapy (PDT) treatment of cancer. The synthesis of two highly fluorescent BODIPY cores was achieved via the acid-catalysed condensation of a pyrrole and a functionalised aldehyde. In order to promote intersystem crossing, and hence improve the singlet oxygen generation of these dyes, bromine atoms were added at the 2,6-positions of the BODIPY core. These dibrominated analogues showed good singlet oxygen quantum yields, and excellent photostability in ethanol. In order to red-shift the main spectral bands of the BODIPY dyes towards the therapeutic window, vinyl/ styryl groups were introduced at the 3-, 5-, and 7-positions via a modified Knoevengal condensation reaction. The addition of vinyl/ styryl groups to the BODIPY core caused an increase in fluorescence quantum yield as well as a decrease in singlet oxygen quantum yield with respect to the dibrominated analogues. However, two of the red-shifted BODIPY dyes still showed moderate singlet oxygen quantum yields. The use of BODIPY dyes in nonlinear optics (NLO) was explored. The nonlinear optical characterisations and optical limiting properties of a series of 3,5-dithienylenevinylene BODIPY dyes were studied, both in dimethylformamide (DMF) solution and when embedded in poly(bisphenol A carbonate) (PBC) as thin films. The 3,5-dithienylenevinylene BODIPY dyes showed typical nonlinear absorption behaviour, with reverse saturable absorption (RSA) profiles, indicating that they have potential as optical limiters. The second-order hyperpolarizability (Y), and third-order nonlinear susceptibility (/m[/(3)]) values are also reported for these dyes. The optical limiting values of one of the BODIPY dyes in solution, and two of the BODIPY-embedded PBC films, were below the maximum threshold of 0.95 J-cm-2. The effect of addition of substituents on the electronic structure of the BODIPY dyes was investigated using TD-DFT calculations. The calculated trends closely followed those determined experimentally.
- Full Text:
- Date Issued: 2018
- Authors: Harris, Jessica
- Date: 2018
- Subjects: Photosensitizing compounds , Active oxygen -- Physiological effect , Photochemotherapy , Cancer -- Treatment , Nonlinear optics , BODIPY (Boron-dipyrromethene)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/58002 , vital:27014
- Description: A series of structurally related BODIPY dyes were synthesised and characterised. Their photophysical properties were studied in order to determine whether they would be suitable candidates for use as photosensitisers in the photodynamic therapy (PDT) treatment of cancer. The synthesis of two highly fluorescent BODIPY cores was achieved via the acid-catalysed condensation of a pyrrole and a functionalised aldehyde. In order to promote intersystem crossing, and hence improve the singlet oxygen generation of these dyes, bromine atoms were added at the 2,6-positions of the BODIPY core. These dibrominated analogues showed good singlet oxygen quantum yields, and excellent photostability in ethanol. In order to red-shift the main spectral bands of the BODIPY dyes towards the therapeutic window, vinyl/ styryl groups were introduced at the 3-, 5-, and 7-positions via a modified Knoevengal condensation reaction. The addition of vinyl/ styryl groups to the BODIPY core caused an increase in fluorescence quantum yield as well as a decrease in singlet oxygen quantum yield with respect to the dibrominated analogues. However, two of the red-shifted BODIPY dyes still showed moderate singlet oxygen quantum yields. The use of BODIPY dyes in nonlinear optics (NLO) was explored. The nonlinear optical characterisations and optical limiting properties of a series of 3,5-dithienylenevinylene BODIPY dyes were studied, both in dimethylformamide (DMF) solution and when embedded in poly(bisphenol A carbonate) (PBC) as thin films. The 3,5-dithienylenevinylene BODIPY dyes showed typical nonlinear absorption behaviour, with reverse saturable absorption (RSA) profiles, indicating that they have potential as optical limiters. The second-order hyperpolarizability (Y), and third-order nonlinear susceptibility (/m[/(3)]) values are also reported for these dyes. The optical limiting values of one of the BODIPY dyes in solution, and two of the BODIPY-embedded PBC films, were below the maximum threshold of 0.95 J-cm-2. The effect of addition of substituents on the electronic structure of the BODIPY dyes was investigated using TD-DFT calculations. The calculated trends closely followed those determined experimentally.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »