Novel potential antimalarials through drug repurposing and multitargeting: a Computational Approach
- Diallo, Bakary N, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162676 , vital:40972 , https://doi.org/10.21955/aasopenres.1114955.1
- Description: This study aims to identify potential antimalarials from Food and Drug Administration (FDA) approved drugs.
- Full Text:
- Date Issued: 2019
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162676 , vital:40972 , https://doi.org/10.21955/aasopenres.1114955.1
- Description: This study aims to identify potential antimalarials from Food and Drug Administration (FDA) approved drugs.
- Full Text:
- Date Issued: 2019
In silico study of Plasmodium 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) for identification of novel inhibitors from SANCDB:
- Diallo, Bakary N, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162687 , vital:40973 , https://doi.org/10.21955/aasopenres.1114960.1
- Description: In this study, we intended to find potential 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) inhibitors as antimalarial drugs from the South African National Compound Database (SANCDB; https://sancdb.rubi.ru.ac.za) using computational tools.
- Full Text:
- Date Issued: 2019
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162687 , vital:40973 , https://doi.org/10.21955/aasopenres.1114960.1
- Description: In this study, we intended to find potential 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) inhibitors as antimalarial drugs from the South African National Compound Database (SANCDB; https://sancdb.rubi.ru.ac.za) using computational tools.
- Full Text:
- Date Issued: 2019
Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay
- Diallo, Bakary N, Swart, Tarryn, Hoppe, Heinrich C, Tastan Bishop, Özlem, Lobb, Kevin A
- Authors: Diallo, Bakary N , Swart, Tarryn , Hoppe, Heinrich C , Tastan Bishop, Özlem , Lobb, Kevin A
- Date: 2021
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/177531 , vital:42830 , https://doi.org/10.1038/s41598-020-80722-2
- Description: Malaria elimination can benefit from time and cost-efficient approaches for antimalarials such as drug repurposing. In this work, 796 DrugBank compounds were screened against 36 Plasmodium falciparum targets using QuickVina-W. Hits were selected after rescoring using GRaph Interaction Matching (GRIM) and ligand efficiency metrics: surface efficiency index (SEI), binding efficiency index (BEI) and lipophilic efficiency (LipE). They were further evaluated in Molecular dynamics (MD). Twenty-five protein–ligand complexes were finally retained from the 28,656 (36×796) dockings.
- Full Text:
- Date Issued: 2021
- Authors: Diallo, Bakary N , Swart, Tarryn , Hoppe, Heinrich C , Tastan Bishop, Özlem , Lobb, Kevin A
- Date: 2021
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/177531 , vital:42830 , https://doi.org/10.1038/s41598-020-80722-2
- Description: Malaria elimination can benefit from time and cost-efficient approaches for antimalarials such as drug repurposing. In this work, 796 DrugBank compounds were screened against 36 Plasmodium falciparum targets using QuickVina-W. Hits were selected after rescoring using GRaph Interaction Matching (GRIM) and ligand efficiency metrics: surface efficiency index (SEI), binding efficiency index (BEI) and lipophilic efficiency (LipE). They were further evaluated in Molecular dynamics (MD). Twenty-five protein–ligand complexes were finally retained from the 28,656 (36×796) dockings.
- Full Text:
- Date Issued: 2021
- «
- ‹
- 1
- ›
- »