Co-encapsulation of rifampicin and isoniazid in crude soybean lecithin liposomes
- Nkanga, Christian I, Noundou, Xavier S, Walker, Roderick B, Krause, Rui W M
- Authors: Nkanga, Christian I , Noundou, Xavier S , Walker, Roderick B , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183536 , vital:44005 , xlink:href="https://doi.org/10.17159/0379-4350/2019/v72a11"
- Description: Despite the well-known anti-mycobacterial actions of isoniazid (INH) and rifampicin (RIF), the clinical success of tuberculosis (TB) therapy requires prolonged administration of multiple drugs in high doses, which often result in frequent adverse effects and low patient adherence. Although liposomes are promising candidates for controlled delivery of anti-TB drug, the high cost of synthetic and highly purified natural lipids currently used in liposomal technology might preclude the universal application of therapeutic liposomes. This work aimed at evaluating the potential of a cost-effective lipid material, crude soybean lecithin (CL), to co-encapsulate RIF and INH for liposomal dual delivery. RIF was encapsulated in CL-liposomes with/without cholesterol using film hydration method, after which INH was incorporated using a freeze–thawing technique. Dynamic light scattering, differential scanning calorimetry, X-ray diffraction and dialysis were used for liposome characterization. Liposomes containing CL alone (CLL) exhibited 90%encapsulation efficiency for RIF and 59%for INH. The mean size and surface charge of CLL were 1114nm and –63mV, respectively. In addition, CLL showed a controlled release profile for the co-encapsulated drugs. CLL would be promising vehicles for macrophage-targeting drug delivery. The present findings demonstrate the feasibility of using CL for preparation of combination products for liposomal delivery.
- Full Text:
- Date Issued: 2019
- Authors: Nkanga, Christian I , Noundou, Xavier S , Walker, Roderick B , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183536 , vital:44005 , xlink:href="https://doi.org/10.17159/0379-4350/2019/v72a11"
- Description: Despite the well-known anti-mycobacterial actions of isoniazid (INH) and rifampicin (RIF), the clinical success of tuberculosis (TB) therapy requires prolonged administration of multiple drugs in high doses, which often result in frequent adverse effects and low patient adherence. Although liposomes are promising candidates for controlled delivery of anti-TB drug, the high cost of synthetic and highly purified natural lipids currently used in liposomal technology might preclude the universal application of therapeutic liposomes. This work aimed at evaluating the potential of a cost-effective lipid material, crude soybean lecithin (CL), to co-encapsulate RIF and INH for liposomal dual delivery. RIF was encapsulated in CL-liposomes with/without cholesterol using film hydration method, after which INH was incorporated using a freeze–thawing technique. Dynamic light scattering, differential scanning calorimetry, X-ray diffraction and dialysis were used for liposome characterization. Liposomes containing CL alone (CLL) exhibited 90%encapsulation efficiency for RIF and 59%for INH. The mean size and surface charge of CLL were 1114nm and –63mV, respectively. In addition, CLL showed a controlled release profile for the co-encapsulated drugs. CLL would be promising vehicles for macrophage-targeting drug delivery. The present findings demonstrate the feasibility of using CL for preparation of combination products for liposomal delivery.
- Full Text:
- Date Issued: 2019
Encapsulation and physicochemical evaluation of efavirenz in liposomes
- Okafor, Nnamdi Ikemefuna, Nkanga, Christian I, Walker, Roderick B, Noundou, Xavier S, Krause, Rui W M
- Authors: Okafor, Nnamdi Ikemefuna , Nkanga, Christian I , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183414 , vital:43988 , xlink:href="https://doi.org/10.1007/s40005-019-00458-8"
- Description: Antiretroviral therapy remains the most efective means of managing the human immune defciency virus/acquired immune defciency syndrome (HIV/AIDS). Application of therapeutics has been hampered by factors including poor bioavailability of most anti-retroviral compounds (ARV), side efects and an alarming emergence of drug resistant strains of the virus. Recent developments and use of drug delivery systems (DDS) has shown potential for improving the pharmacological profle of ARV. Amongst these complex DDS, liposomes have been explored for delivery of ARV. In this study, we have aimed at exploring efcient encapsulation of efavirenz (EFV), a potent ARV using diferent mass ratios of crude soybean lecithin and cholesterol. The EFV-loaded liposomes (EFL) were prepared using thin flm hydration and evaluated for particle size, zeta potential (ZP), encapsulation efciency (EE%), morphology and drug release studies. Diferential scanning calorimetry (DSC), X-ray difraction (XRD), energy dispersity spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy were used for comprehensive physicochemical characterization of EFL. EFL exhibited high encapsulation (99%) in 1:1 crude lecithin to cholesterol mass ratio. The average particle size and Zeta Potential of EFL were found to be 411.10±7.40 nm and −53.5.3±0.06 mV, respectively. EFL showed a relatively controlled EFV release behaviour that was similar to the dissolution profle of un-encapsulated EFV. This suggests that EFL represents a promising vehicle for efective EFV delivery while providing the advantages of a nano-scaled delivery system
- Full Text:
- Date Issued: 2020
- Authors: Okafor, Nnamdi Ikemefuna , Nkanga, Christian I , Walker, Roderick B , Noundou, Xavier S , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183414 , vital:43988 , xlink:href="https://doi.org/10.1007/s40005-019-00458-8"
- Description: Antiretroviral therapy remains the most efective means of managing the human immune defciency virus/acquired immune defciency syndrome (HIV/AIDS). Application of therapeutics has been hampered by factors including poor bioavailability of most anti-retroviral compounds (ARV), side efects and an alarming emergence of drug resistant strains of the virus. Recent developments and use of drug delivery systems (DDS) has shown potential for improving the pharmacological profle of ARV. Amongst these complex DDS, liposomes have been explored for delivery of ARV. In this study, we have aimed at exploring efcient encapsulation of efavirenz (EFV), a potent ARV using diferent mass ratios of crude soybean lecithin and cholesterol. The EFV-loaded liposomes (EFL) were prepared using thin flm hydration and evaluated for particle size, zeta potential (ZP), encapsulation efciency (EE%), morphology and drug release studies. Diferential scanning calorimetry (DSC), X-ray difraction (XRD), energy dispersity spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy were used for comprehensive physicochemical characterization of EFL. EFL exhibited high encapsulation (99%) in 1:1 crude lecithin to cholesterol mass ratio. The average particle size and Zeta Potential of EFL were found to be 411.10±7.40 nm and −53.5.3±0.06 mV, respectively. EFL showed a relatively controlled EFV release behaviour that was similar to the dissolution profle of un-encapsulated EFV. This suggests that EFL represents a promising vehicle for efective EFV delivery while providing the advantages of a nano-scaled delivery system
- Full Text:
- Date Issued: 2020
The use of quantitative analysis and Hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds
- Makoni, Pedzisai A, Ranchhod, Janeeta, Khamanga, Sandile M, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Ranchhod, Janeeta , Khamanga, Sandile M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183376 , vital:43981 , xlink:href="https://doi.org/10.1016/j.jsps.2020.01.010"
- Description: The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT larger than 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
- Full Text:
- Date Issued: 2020
- Authors: Makoni, Pedzisai A , Ranchhod, Janeeta , Khamanga, Sandile M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183376 , vital:43981 , xlink:href="https://doi.org/10.1016/j.jsps.2020.01.010"
- Description: The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto’s molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT larger than 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.
- Full Text:
- Date Issued: 2020
An investigation into the neuroprotective properties of ibuprofen
- Lambat, Zaynab Y, Conrad, Natasha, Anoopkumar-Dukie, Shailendra, Walker, Roderick B, Daya, Santylal
- Authors: Lambat, Zaynab Y , Conrad, Natasha , Anoopkumar-Dukie, Shailendra , Walker, Roderick B , Daya, Santylal
- Date: 2000
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184335 , vital:44209 , xlink:href="https://doi.org/10.1023/A:1011115006856"
- Description: There is increasing evidence suggesting a protective role for anti-inflammatory medications in neurological disorders such as Alzheimer's disease (AD). While there has not been any direct evidence for this, a number of clinical studies indicate that those patients who have had a history of nonsteroidal anti-inflammatory use, have a lower incidence of AD. Since there is currently no evidence on the mechanism by which these agents offer possible neuroprotection, we investigated the potential neuroprotective properties of the nonsteroidal anti-inflammatory drug, ibuprofen, by examining whether this agent could reduce lipid peroxidation and superoxide radical generation. Quinolinic acid and cyanide, known neurotoxins, were used to induce lipid peroxidation and superoxide anion formation respectively, in rat brain homogenate. The results show that ibuprofen significantly (p more than 0.05) reduced quinolinic acid-induced lipid peroxidation and cyanide-induced superoxide production. The results of the present report therefore suggest a possible mechanism for the neuroprotective effect of ibuprofen.
- Full Text: false
- Date Issued: 2000
- Authors: Lambat, Zaynab Y , Conrad, Natasha , Anoopkumar-Dukie, Shailendra , Walker, Roderick B , Daya, Santylal
- Date: 2000
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184335 , vital:44209 , xlink:href="https://doi.org/10.1023/A:1011115006856"
- Description: There is increasing evidence suggesting a protective role for anti-inflammatory medications in neurological disorders such as Alzheimer's disease (AD). While there has not been any direct evidence for this, a number of clinical studies indicate that those patients who have had a history of nonsteroidal anti-inflammatory use, have a lower incidence of AD. Since there is currently no evidence on the mechanism by which these agents offer possible neuroprotection, we investigated the potential neuroprotective properties of the nonsteroidal anti-inflammatory drug, ibuprofen, by examining whether this agent could reduce lipid peroxidation and superoxide radical generation. Quinolinic acid and cyanide, known neurotoxins, were used to induce lipid peroxidation and superoxide anion formation respectively, in rat brain homogenate. The results show that ibuprofen significantly (p more than 0.05) reduced quinolinic acid-induced lipid peroxidation and cyanide-induced superoxide production. The results of the present report therefore suggest a possible mechanism for the neuroprotective effect of ibuprofen.
- Full Text: false
- Date Issued: 2000
Cyanide-induced free radical production and lipid peroxidation in rat brain homogenate is reduced by aspirin
- Daya, Santylal, Walker, Roderick B, Anoopkumar-Dukie, Shailendra
- Authors: Daya, Santylal , Walker, Roderick B , Anoopkumar-Dukie, Shailendra
- Date: 2000
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184346 , vital:44210 , xlink:href="https://doi.org/10.1007/BF02674529"
- Description: The neuroprotective properties of aspirin were investigated using cyanide-induced neurotoxicity as model. Cyanide, a known neurotoxic agent significantly increased lipid peroxidation and superoxide anion levels in rat brain homogenate in a concentration-dependent manner (0.25–1.0 mM). When homogenate, containing 1.0 mM KCN was cotreated with aspirin (1.0 mM) there was a significant decrease in lipid peroxidation. Aspirin (0.5 mM and 1.0 mM) also significantly reduced KCN-induced superoxide anion generation. The results of the present report therefore indicate a neuroprotective role for aspirin.
- Full Text:
- Date Issued: 2000
- Authors: Daya, Santylal , Walker, Roderick B , Anoopkumar-Dukie, Shailendra
- Date: 2000
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184346 , vital:44210 , xlink:href="https://doi.org/10.1007/BF02674529"
- Description: The neuroprotective properties of aspirin were investigated using cyanide-induced neurotoxicity as model. Cyanide, a known neurotoxic agent significantly increased lipid peroxidation and superoxide anion levels in rat brain homogenate in a concentration-dependent manner (0.25–1.0 mM). When homogenate, containing 1.0 mM KCN was cotreated with aspirin (1.0 mM) there was a significant decrease in lipid peroxidation. Aspirin (0.5 mM and 1.0 mM) also significantly reduced KCN-induced superoxide anion generation. The results of the present report therefore indicate a neuroprotective role for aspirin.
- Full Text:
- Date Issued: 2000
The impact of manufacturing variables on in vitro release of clobetasol 17-propionate from pilot scale cream formulations
- Fauzee, Ayesha F B, Khamanga, Sandile M, Walker, Roderick B
- Authors: Fauzee, Ayesha F B , Khamanga, Sandile M , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183872 , vital:44077 , xlink:href="https://doi.org/10.3109/03639045.2013.842579"
- Description: The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 24 full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer–Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.
- Full Text:
- Date Issued: 2014
- Authors: Fauzee, Ayesha F B , Khamanga, Sandile M , Walker, Roderick B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183872 , vital:44077 , xlink:href="https://doi.org/10.3109/03639045.2013.842579"
- Description: The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 24 full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer–Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.
- Full Text:
- Date Issued: 2014
Syntheses, protonation constants and antimicrobial activity of 2-substituted N-alkylimidazole derivatives
- Kleyi, Phumelele, Walmsley, Ryan S, Gundhla, Isaac Z, Walmsley, Tara A, Jauka, Tembisa I, Dames, Joanna F, Walker, Roderick B, Torto, Nelson, Tshentu, Zenixole R
- Authors: Kleyi, Phumelele , Walmsley, Ryan S , Gundhla, Isaac Z , Walmsley, Tara A , Jauka, Tembisa I , Dames, Joanna F , Walker, Roderick B , Torto, Nelson , Tshentu, Zenixole R
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184066 , vital:44165 , xlink:href="https://www.ajol.info/index.php/sajc/article/view/123858"
- Description: A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus and Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 µg mL–1) and B. subtilis subsp. spizizenii (5–20 µg mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 µg mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans).
- Full Text:
- Date Issued: 2012
- Authors: Kleyi, Phumelele , Walmsley, Ryan S , Gundhla, Isaac Z , Walmsley, Tara A , Jauka, Tembisa I , Dames, Joanna F , Walker, Roderick B , Torto, Nelson , Tshentu, Zenixole R
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184066 , vital:44165 , xlink:href="https://www.ajol.info/index.php/sajc/article/view/123858"
- Description: A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus and Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 µg mL–1) and B. subtilis subsp. spizizenii (5–20 µg mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 µg mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans).
- Full Text:
- Date Issued: 2012
Forced degradation studies of clobetasol 17‐propionate in methanol, propylene glycol, as bulk drug and cream formulations by RP‐HPLC
- Fauzee, Ayesha F B, Walker, Roderick B
- Authors: Fauzee, Ayesha F B , Walker, Roderick B
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184005 , vital:44154 , xlink:href="https://doi.org/10.1002/jssc.201200969"
- Description: A rapid, simple, stability-indicating forced degradation study of clobetasol 17-propionate was conducted using RP-HPLC. The method was used to analyze clobetasol 17-propionate in methanol, propylene glycol, and a cream formulation. Isocratic elution of clobetasol and its degradation products was achieved using a Nova-Pak® 4 μm C18 150 mm × 3.9 mm id cartridge column and a mobile phase of methanol: water (68:32 v/v) at a flow rate of 0.9 mL min−1. Quantitation was achieved with UV detection at 239 nm. Nondegraded clobetasol was eluted at a retention time of 6.0 min. Clobetasol 17-propionate was subjected to different stress conditions viz., acidic, basic, heat, oxidation, light, and neutral hydrolysis. The greatest degradation occurred under strong base and oxidative conditions. Strong base-degraded clobetasol produced additional peaks at retention times of 1.8, 4.0, 5.0, and 8.0 min and clobetasol oxidation degradation peaks eluted at 2.2 and 24 min. Complete validation was performed for linearity, accuracy, and precision over the concentration range 0.15–15 μg mL−1. All data were analyzed statistically and this RP-HPLC method proved to be accurate, precise, linear, and stability indicating for the quantitation of clobetasol 17-propionate in methanol, propylene glycol, and cream formulations.
- Full Text:
- Date Issued: 2013
- Authors: Fauzee, Ayesha F B , Walker, Roderick B
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184005 , vital:44154 , xlink:href="https://doi.org/10.1002/jssc.201200969"
- Description: A rapid, simple, stability-indicating forced degradation study of clobetasol 17-propionate was conducted using RP-HPLC. The method was used to analyze clobetasol 17-propionate in methanol, propylene glycol, and a cream formulation. Isocratic elution of clobetasol and its degradation products was achieved using a Nova-Pak® 4 μm C18 150 mm × 3.9 mm id cartridge column and a mobile phase of methanol: water (68:32 v/v) at a flow rate of 0.9 mL min−1. Quantitation was achieved with UV detection at 239 nm. Nondegraded clobetasol was eluted at a retention time of 6.0 min. Clobetasol 17-propionate was subjected to different stress conditions viz., acidic, basic, heat, oxidation, light, and neutral hydrolysis. The greatest degradation occurred under strong base and oxidative conditions. Strong base-degraded clobetasol produced additional peaks at retention times of 1.8, 4.0, 5.0, and 8.0 min and clobetasol oxidation degradation peaks eluted at 2.2 and 24 min. Complete validation was performed for linearity, accuracy, and precision over the concentration range 0.15–15 μg mL−1. All data were analyzed statistically and this RP-HPLC method proved to be accurate, precise, linear, and stability indicating for the quantitation of clobetasol 17-propionate in methanol, propylene glycol, and cream formulations.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »