Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist
- Madeira, P T, Dray, F Allen, Coetzee, Julie A, Paterson, Iain D, Tipping, Philip W
- Authors: Madeira, P T , Dray, F Allen , Coetzee, Julie A , Paterson, Iain D , Tipping, Philip W
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424765 , vital:72182 , xlink:href="https://doi.org/10.1016/j.sajb.2016.03.007"
- Description: Biological control of Azolla filiculoides in South Africa with the Azolla specialist Stenopelmus rufinasus has been highly successful. However, field surveys showed that the agent utilized another Azolla species, thought to be the native Azolla pinnata subsp. africana, which contradicted host specificity trials. It is notoriously difficult to determine Azolla species based on morphology so genetic analyses were required to confirm the identity of the Azolla used by the agent. Extensive sampling was conducted and samples were sequenced at the trnL-trnF and trnG-trnR chloroplastic regions and the nuclear ITS1 region. Current literature reported A. filiculoides as the only Section Azolla species in southern Africa but 24 samples were identified as Azolla cristata, an introduced species within Section Azolla that was not used during host specificity trials. A. pinnata subsp. africana was only located at one site in southern Africa, while the alien A. pinnata subsp. asiatica was located at three. What was thought to be A. pinnata subsp. africana was in fact A. cristata, a closer relative of A. filiculoides and a suitable host according to specificity trials. This study confirms that S. rufinasus is a proficient Azolla taxonomist but also supports the use of molecular techniques for resolving taxonomic conundrums.
- Full Text:
- Date Issued: 2016
- Authors: Madeira, P T , Dray, F Allen , Coetzee, Julie A , Paterson, Iain D , Tipping, Philip W
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424765 , vital:72182 , xlink:href="https://doi.org/10.1016/j.sajb.2016.03.007"
- Description: Biological control of Azolla filiculoides in South Africa with the Azolla specialist Stenopelmus rufinasus has been highly successful. However, field surveys showed that the agent utilized another Azolla species, thought to be the native Azolla pinnata subsp. africana, which contradicted host specificity trials. It is notoriously difficult to determine Azolla species based on morphology so genetic analyses were required to confirm the identity of the Azolla used by the agent. Extensive sampling was conducted and samples were sequenced at the trnL-trnF and trnG-trnR chloroplastic regions and the nuclear ITS1 region. Current literature reported A. filiculoides as the only Section Azolla species in southern Africa but 24 samples were identified as Azolla cristata, an introduced species within Section Azolla that was not used during host specificity trials. A. pinnata subsp. africana was only located at one site in southern Africa, while the alien A. pinnata subsp. asiatica was located at three. What was thought to be A. pinnata subsp. africana was in fact A. cristata, a closer relative of A. filiculoides and a suitable host according to specificity trials. This study confirms that S. rufinasus is a proficient Azolla taxonomist but also supports the use of molecular techniques for resolving taxonomic conundrums.
- Full Text:
- Date Issued: 2016
The distribution and abundance of the stem-galling fly, Cecidochares connexa (Macquart)(Diptera: Tephritidae), a biological control agent of Chromolaena odorata (L.)(Asteraceae), in Ghana
- Aigbedion-Atalor, Pascal O, Wilson, David D, Eziah, Vincent Y, Day, Michael D, Paterson, Iain D
- Authors: Aigbedion-Atalor, Pascal O , Wilson, David D , Eziah, Vincent Y , Day, Michael D , Paterson, Iain D
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407074 , vital:70334 , xlink:href="https://hdl.handle.net/10520/EJC-113112d1da"
- Description: Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae: Eupatorieae) is one of the worst invasive weeds in West Africa, and a serious biotic threat to food security. The stem-galling fly, Cecidochares connexa (Macquart) (Diptera: Tephritidae), a biological control agent for C. odorata, was released in the Ivory Coast in 2003 and first detected in Ghana in 2014. The spatiotemporal distribution and abundance of C. connexa in Ghana was determined by country-wide surveys from 2015 to 2016. Galls were found in varying densities across Ghana but gall densities were consistently low east of Lake Volta. A limited survey conducted in the extreme west of Togo in 2016, found the gall fly also in low numbers. There was a significant correlation between C. connexa gall densities and the distance from the release sites in the Ivory Coast. The distribution and abundance of the gall fly in Ghana could be explained by its spread from the original release sites over time and/or the much drier conditions east of Lake Volta. Cecidochares connexa has dispersed a distance of about 1000 km over a 10-year period and, while there is some evidence that the gall fly is still dispersing towards the east, its range and population size could be limited by the dry climatic conditions in the east of Ghana and in Togo. Actively redistributing the agent over this dry corridor to the more humid and higher rainfall areas of Nigeria, may result in the spread of this agent through the rest of West and Central Africa, thereby aiding the control of C. odorata in the region.
- Full Text:
- Date Issued: 2018
- Authors: Aigbedion-Atalor, Pascal O , Wilson, David D , Eziah, Vincent Y , Day, Michael D , Paterson, Iain D
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407074 , vital:70334 , xlink:href="https://hdl.handle.net/10520/EJC-113112d1da"
- Description: Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae: Eupatorieae) is one of the worst invasive weeds in West Africa, and a serious biotic threat to food security. The stem-galling fly, Cecidochares connexa (Macquart) (Diptera: Tephritidae), a biological control agent for C. odorata, was released in the Ivory Coast in 2003 and first detected in Ghana in 2014. The spatiotemporal distribution and abundance of C. connexa in Ghana was determined by country-wide surveys from 2015 to 2016. Galls were found in varying densities across Ghana but gall densities were consistently low east of Lake Volta. A limited survey conducted in the extreme west of Togo in 2016, found the gall fly also in low numbers. There was a significant correlation between C. connexa gall densities and the distance from the release sites in the Ivory Coast. The distribution and abundance of the gall fly in Ghana could be explained by its spread from the original release sites over time and/or the much drier conditions east of Lake Volta. Cecidochares connexa has dispersed a distance of about 1000 km over a 10-year period and, while there is some evidence that the gall fly is still dispersing towards the east, its range and population size could be limited by the dry climatic conditions in the east of Ghana and in Togo. Actively redistributing the agent over this dry corridor to the more humid and higher rainfall areas of Nigeria, may result in the spread of this agent through the rest of West and Central Africa, thereby aiding the control of C. odorata in the region.
- Full Text:
- Date Issued: 2018
West African arthropods hold promise as biological control agents for an invasive tree in the Pacific Islands
- Paterson, Iain D, Paynter, Quentin, Neser, Stefan, Akpabey, Felix J, Compton, Stephen G, Orapa, W
- Authors: Paterson, Iain D , Paynter, Quentin , Neser, Stefan , Akpabey, Felix J , Compton, Stephen G , Orapa, W
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407119 , vital:70338 , xlink:href="https://hdl.handle.net/10520/EJC-639c91613"
- Description: African tulip tree, Spathodea campanulata Beauv. (Bignoniaceae), is a large tree of secondary forests, forest edges and savannas that is indigenous to Central and West Africa (Bidgood 1994). It has been widely utilised as an ornamental plant due to its beautiful flowers, fast growth and relative ease of cultivation, as a shade tree in parks and coffee plantations, and as a living fencepost (Francis 1990). Naturalisation has often followed cultivation of the plant, which is now established outside of the native range in Africa (Hedberg et al. 2006), the Caribbean (Francis 1990; Labrada and Medina 2009) and many Pacific islands (Meyer 2004), including Hawaii, Papua New Guinea, Fiji, Samoa, Tonga,Vanuatu and Tahiti (Lowe et al. 2000; Dovey et al. 2004; Labrada and Medina 2009). On some of these islands it has become a destructive weed, invading indigenous forests and having a severe impact on agricultural production (Labrada and Medina 2009; Larrue et al. 2014). This has resulted in African tulip tree being recognised as one of the 100 worst alien invasive species worldwide, along with only 30 other terrestrial plants (Lowe et al. 2000).
- Full Text:
- Date Issued: 2017
- Authors: Paterson, Iain D , Paynter, Quentin , Neser, Stefan , Akpabey, Felix J , Compton, Stephen G , Orapa, W
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407119 , vital:70338 , xlink:href="https://hdl.handle.net/10520/EJC-639c91613"
- Description: African tulip tree, Spathodea campanulata Beauv. (Bignoniaceae), is a large tree of secondary forests, forest edges and savannas that is indigenous to Central and West Africa (Bidgood 1994). It has been widely utilised as an ornamental plant due to its beautiful flowers, fast growth and relative ease of cultivation, as a shade tree in parks and coffee plantations, and as a living fencepost (Francis 1990). Naturalisation has often followed cultivation of the plant, which is now established outside of the native range in Africa (Hedberg et al. 2006), the Caribbean (Francis 1990; Labrada and Medina 2009) and many Pacific islands (Meyer 2004), including Hawaii, Papua New Guinea, Fiji, Samoa, Tonga,Vanuatu and Tahiti (Lowe et al. 2000; Dovey et al. 2004; Labrada and Medina 2009). On some of these islands it has become a destructive weed, invading indigenous forests and having a severe impact on agricultural production (Labrada and Medina 2009; Larrue et al. 2014). This has resulted in African tulip tree being recognised as one of the 100 worst alien invasive species worldwide, along with only 30 other terrestrial plants (Lowe et al. 2000).
- Full Text:
- Date Issued: 2017
The potential for biological control on cryptic plant invasions
- Canavan, Kim N, Canavan, Susan, Harms, Nathan E, Lambertini, Carla, Paterson, Iain D, Thum, Ryan
- Authors: Canavan, Kim N , Canavan, Susan , Harms, Nathan E , Lambertini, Carla , Paterson, Iain D , Thum, Ryan
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423562 , vital:72072 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104243"
- Description: Cryptic invasions can be defined as ‘the occurrence of an invasive species or genotype that was not previously recognised as alien in origin or not distinguished from other aliens’. Such invasions can result in negative impacts on the recipient ecosystems and disturb the evolutionary history of native plant populations. Many cryptic invasions have become so problematic that there is a need to implement control measures. This paper explores the potential for biological control to be implemented as a means of managing cryptic invasions. Firstly, the paper defines the different forms of cryptic invasion, differentiating between interspecific and intraspecific invasions; this hierarchy influences how to detect, study and ultimately implement biological control when cryptic invasions occur. Secondly, unique challenges associated with biological control programmes for cryptic invasions are addressed, including: the need for intraspecific level host specificity in agents, the occurrence of hybridisation between native species/lineages and the target weed, the role of enemy release in cryptic invasions in the presence of closely related native plant species/lineages, and a review of potential stakeholder conflicts of interest and legislation. Biological control of cryptic invasions has been shown to be possible, however the process will be more difficult and complex than controlling traditional targets and will likely take up more time and resources. If these challenges are overcome, then biological control programmes against cryptic invasions should be able to proceed and maintain the same standards as traditional biological control programmes.
- Full Text:
- Date Issued: 2020
- Authors: Canavan, Kim N , Canavan, Susan , Harms, Nathan E , Lambertini, Carla , Paterson, Iain D , Thum, Ryan
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423562 , vital:72072 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104243"
- Description: Cryptic invasions can be defined as ‘the occurrence of an invasive species or genotype that was not previously recognised as alien in origin or not distinguished from other aliens’. Such invasions can result in negative impacts on the recipient ecosystems and disturb the evolutionary history of native plant populations. Many cryptic invasions have become so problematic that there is a need to implement control measures. This paper explores the potential for biological control to be implemented as a means of managing cryptic invasions. Firstly, the paper defines the different forms of cryptic invasion, differentiating between interspecific and intraspecific invasions; this hierarchy influences how to detect, study and ultimately implement biological control when cryptic invasions occur. Secondly, unique challenges associated with biological control programmes for cryptic invasions are addressed, including: the need for intraspecific level host specificity in agents, the occurrence of hybridisation between native species/lineages and the target weed, the role of enemy release in cryptic invasions in the presence of closely related native plant species/lineages, and a review of potential stakeholder conflicts of interest and legislation. Biological control of cryptic invasions has been shown to be possible, however the process will be more difficult and complex than controlling traditional targets and will likely take up more time and resources. If these challenges are overcome, then biological control programmes against cryptic invasions should be able to proceed and maintain the same standards as traditional biological control programmes.
- Full Text:
- Date Issued: 2020
Eight decades of invasion by Chromolaena odorata (Asteraceae) and its biological control in West Africa: the story so far
- Aigbedion-Atalor, Pascal O, Adom, Medetissi, Day, Michael D, Uyi, Osariyekemwen O, Egbon, Ikponmwosa N, Idemudia, I, Igbinosa, Igho B, Paterson, Iain D, Braimah, Haruna, Wilson, David D, Zachariades, Costas
- Authors: Aigbedion-Atalor, Pascal O , Adom, Medetissi , Day, Michael D , Uyi, Osariyekemwen O , Egbon, Ikponmwosa N , Idemudia, I , Igbinosa, Igho B , Paterson, Iain D , Braimah, Haruna , Wilson, David D , Zachariades, Costas
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417450 , vital:71454 , xlink:href="https://doi.org/10.1080/09583157.2019.1670782"
- Description: Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae) is a perennial weedy shrub of neotropical origin and a serious biotic threat in its invasive range. The Asian-West Africa (AWA) biotype of C. odorata present in West Africa is both morphologically and genetically different from the southern African (SA) biotype. The AWA biotype was first introduced into Nigeria in the late 1930s and rapidly spread across West Africa. Currently, 12 of the 16 countries in West Africa have been invaded, with significant negative effects on indigenous flora and fauna. However, locals in West Africa have found several uses for the weed. As chemical, physical and other conventional methods were unsustainable, costly and largely ineffective, three biological control agents, Apion brunneonigrum (Coleoptera: Brentidae), Pareuchaetes pseudoinsulata (Lepidoptera: Erebidae) and Cecidochares connexa (Diptera: Tephritidae), have been released in West Africa between the 1970s and the early 2000s. However, only C. connexa and P. pseudoinsulata established, contributing to the control of the weed, in six and four countries in West Africa respectively. Limited research funding, the absence of post-release evaluations of the established agents, and the ‘conflict of interest’ status of C. odorata (i.e. being beneficial for local use but damaging to ecosystem services and agriculture), are serious factors deterring the overall biological control effort. Here, using historical records and field surveys, we examine the invasion history, spread, impacts, and management of C. odorata in West Africa and make recommendations for the sustainable management of C. odorata in the region.
- Full Text:
- Date Issued: 2019
- Authors: Aigbedion-Atalor, Pascal O , Adom, Medetissi , Day, Michael D , Uyi, Osariyekemwen O , Egbon, Ikponmwosa N , Idemudia, I , Igbinosa, Igho B , Paterson, Iain D , Braimah, Haruna , Wilson, David D , Zachariades, Costas
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417450 , vital:71454 , xlink:href="https://doi.org/10.1080/09583157.2019.1670782"
- Description: Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae) is a perennial weedy shrub of neotropical origin and a serious biotic threat in its invasive range. The Asian-West Africa (AWA) biotype of C. odorata present in West Africa is both morphologically and genetically different from the southern African (SA) biotype. The AWA biotype was first introduced into Nigeria in the late 1930s and rapidly spread across West Africa. Currently, 12 of the 16 countries in West Africa have been invaded, with significant negative effects on indigenous flora and fauna. However, locals in West Africa have found several uses for the weed. As chemical, physical and other conventional methods were unsustainable, costly and largely ineffective, three biological control agents, Apion brunneonigrum (Coleoptera: Brentidae), Pareuchaetes pseudoinsulata (Lepidoptera: Erebidae) and Cecidochares connexa (Diptera: Tephritidae), have been released in West Africa between the 1970s and the early 2000s. However, only C. connexa and P. pseudoinsulata established, contributing to the control of the weed, in six and four countries in West Africa respectively. Limited research funding, the absence of post-release evaluations of the established agents, and the ‘conflict of interest’ status of C. odorata (i.e. being beneficial for local use but damaging to ecosystem services and agriculture), are serious factors deterring the overall biological control effort. Here, using historical records and field surveys, we examine the invasion history, spread, impacts, and management of C. odorata in West Africa and make recommendations for the sustainable management of C. odorata in the region.
- Full Text:
- Date Issued: 2019
Addressing the red flags in cochineal identification: The use of molecular techniques to identify cochineal insects that are used as biological control agents for invasive alien cacti
- van Steenderen, Clarke J M, Paterson, Iain D, Edwards, Shelley, Day, Michael D
- Authors: van Steenderen, Clarke J M , Paterson, Iain D , Edwards, Shelley , Day, Michael D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423282 , vital:72044 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104426"
- Description: Invasive Cactaceae cause considerable damage to ecosystem function and agricultural practices around the world. The most successful biological control agents used to combat this group of weeds belong to the genus Dactylopius (Hemiptera: Dactylopiidae), commonly known as ‘cochineal’. Effective control relies on selecting the correct species, or in some cases, the most effective intraspecific lineage, of cochineal for the target cactus species. Many of the Dactylopius species are so morphologically similar, and in the case of intraspecific lineages, identical, that numerous misidentifications have been made in the past. These errors have resulted in failed attempts at the biological control of some cactus species. This study aimed to generate a multi-locus genetic database to enable the accurate identification of dactylopiids. Genetic characterization was achieved through the nucleotide sequencing of three gene regions (12S rRNA, 18S rRNA, and COI) and two inter-simple sequence repeats (ISSR). Nucleotide sequences were very effective for species-level and D. tomentosus lineage-level identification, but could not distinguish between the two lineages within D. opuntiae commonly used for biological control of various Opuntia spp. Fragment analysis through the use of ISSRs successfully addressed this issue. This is the first time that a method has been developed that can distinguish between these two D. opuntiae lineages. Using the methods developed in this study, biological control practitioners can ensure that the most effective agent species and lineages are used for each cactus target weed, thus maximizing the level of control.
- Full Text:
- Date Issued: 2021
- Authors: van Steenderen, Clarke J M , Paterson, Iain D , Edwards, Shelley , Day, Michael D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423282 , vital:72044 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104426"
- Description: Invasive Cactaceae cause considerable damage to ecosystem function and agricultural practices around the world. The most successful biological control agents used to combat this group of weeds belong to the genus Dactylopius (Hemiptera: Dactylopiidae), commonly known as ‘cochineal’. Effective control relies on selecting the correct species, or in some cases, the most effective intraspecific lineage, of cochineal for the target cactus species. Many of the Dactylopius species are so morphologically similar, and in the case of intraspecific lineages, identical, that numerous misidentifications have been made in the past. These errors have resulted in failed attempts at the biological control of some cactus species. This study aimed to generate a multi-locus genetic database to enable the accurate identification of dactylopiids. Genetic characterization was achieved through the nucleotide sequencing of three gene regions (12S rRNA, 18S rRNA, and COI) and two inter-simple sequence repeats (ISSR). Nucleotide sequences were very effective for species-level and D. tomentosus lineage-level identification, but could not distinguish between the two lineages within D. opuntiae commonly used for biological control of various Opuntia spp. Fragment analysis through the use of ISSRs successfully addressed this issue. This is the first time that a method has been developed that can distinguish between these two D. opuntiae lineages. Using the methods developed in this study, biological control practitioners can ensure that the most effective agent species and lineages are used for each cactus target weed, thus maximizing the level of control.
- Full Text:
- Date Issued: 2021
ISSRs indicate that Chromolaena odorata invading southern Africa originates in Jamaica or Cuba
- Paterson, Iain D, Zachariades, Costas
- Authors: Paterson, Iain D , Zachariades, Costas
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406105 , vital:70239 , xlink:href="https://doi.org/10.1016/j.biocontrol.2013.04.005"
- Description: Two biotypes of the invasive alien plant, Chromolaena odorata (L.) R.M. King and Rob. (Asteraceae: Eupatorieae), are recognized in the plant’s introduced distribution. The Asian/West African (A/WA) biotype is present in West and Central Africa, India, Southeast Asia and Oceania, while the southern African (SA) biotype is only present in southern Africa. Biological control using insect natural enemies has been significantly more successful against the A/WA biotype than the SA biotype, suggesting that host plant incompatibility may have resulted in reduced efficacy of biological control agents in southern Africa. Inter-Simple Sequence Repeats (ISSR) were used to identify the origin of the SA biotype as Jamaica or Cuba. The data also confirm that the SA biotype is genetically distinct from the A/WA biotype and that the SA biotype is the result of a separate introduction. Biological control agents for C. odorata in southern Africa should be sourced from Jamaica and Cuba in order to avoid host plant incompatibility problems.
- Full Text:
- Date Issued: 2014
- Authors: Paterson, Iain D , Zachariades, Costas
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406105 , vital:70239 , xlink:href="https://doi.org/10.1016/j.biocontrol.2013.04.005"
- Description: Two biotypes of the invasive alien plant, Chromolaena odorata (L.) R.M. King and Rob. (Asteraceae: Eupatorieae), are recognized in the plant’s introduced distribution. The Asian/West African (A/WA) biotype is present in West and Central Africa, India, Southeast Asia and Oceania, while the southern African (SA) biotype is only present in southern Africa. Biological control using insect natural enemies has been significantly more successful against the A/WA biotype than the SA biotype, suggesting that host plant incompatibility may have resulted in reduced efficacy of biological control agents in southern Africa. Inter-Simple Sequence Repeats (ISSR) were used to identify the origin of the SA biotype as Jamaica or Cuba. The data also confirm that the SA biotype is genetically distinct from the A/WA biotype and that the SA biotype is the result of a separate introduction. Biological control agents for C. odorata in southern Africa should be sourced from Jamaica and Cuba in order to avoid host plant incompatibility problems.
- Full Text:
- Date Issued: 2014
Biological control of South African plants that are invasive elsewhere in the world: A review of earlier and current programmes
- Olckers, Terence, Coetzee, Julie A, Egli, Daniella, Martin, Grant D, Paterson, Iain D, Sutton, Guy F, Wood, Alan R
- Authors: Olckers, Terence , Coetzee, Julie A , Egli, Daniella , Martin, Grant D , Paterson, Iain D , Sutton, Guy F , Wood, Alan R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414336 , vital:71137 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a21"
- Description: South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa’s history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.
- Full Text:
- Date Issued: 2021
- Authors: Olckers, Terence , Coetzee, Julie A , Egli, Daniella , Martin, Grant D , Paterson, Iain D , Sutton, Guy F , Wood, Alan R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414336 , vital:71137 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a21"
- Description: South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa’s history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.
- Full Text:
- Date Issued: 2021
Cryptic species of a water hyacinth biological control agent revealed in South Africa: host specificity, impact, and thermal tolerance
- Paterson, Iain D, Coetzee, Julie A, Weyl, Philip S R, Griffith, Tamzin C, Voogt, Nina, Hill, Martin P
- Authors: Paterson, Iain D , Coetzee, Julie A , Weyl, Philip S R , Griffith, Tamzin C , Voogt, Nina , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423982 , vital:72113 , xlink:href="https://doi.org/10.1111/eea.12812"
- Description: The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.
- Full Text:
- Date Issued: 2019
- Authors: Paterson, Iain D , Coetzee, Julie A , Weyl, Philip S R , Griffith, Tamzin C , Voogt, Nina , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423982 , vital:72113 , xlink:href="https://doi.org/10.1111/eea.12812"
- Description: The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.
- Full Text:
- Date Issued: 2019
Two in one: cryptic species discovered in biological control agent populations using molecular data and crossbreeding experiments
- Paterson, Iain D, Mangan, Rose, Downie, Douglas A, Coetzee, Julie A, Hill, Martin P, Burke, Ashley M, Downey, Paul O, Henry, Thomas J, Compton, Stephen G
- Authors: Paterson, Iain D , Mangan, Rose , Downie, Douglas A , Coetzee, Julie A , Hill, Martin P , Burke, Ashley M , Downey, Paul O , Henry, Thomas J , Compton, Stephen G
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424877 , vital:72191 , xlink:href="https://doi.org/10.1002/ece3.2297"
- Description: There are many examples of cryptic species that have been identified through DNA-barcoding or other genetic techniques. There are, however, very few confirmations of cryptic species being reproductively isolated. This study presents one of the few cases of cryptic species that has been confirmed to be reproductively isolated and therefore true species according to the biological species concept. The cryptic species are of special interest because they were discovered within biological control agent populations. Two geographically isolated populations of Eccritotarsus catarinensis (Carvalho) [Hemiptera: Miridae], a biological control agent for the invasive aquatic macrophyte, water hyacinth, Eichhornia crassipes (Mart.) Solms [Pontederiaceae], in South Africa, were sampled from the native range of the species in South America. Morphological characteristics indicated that both populations were the same species according to the current taxonomy, but subsequent DNA analysis and breeding experiments revealed that the two populations are reproductively isolated. Crossbreeding experiments resulted in very few hybrid offspring when individuals were forced to interbreed with individuals of the other population, and no hybrid offspring were recorded when a choice of mate from either population was offered. The data indicate that the two populations are cryptic species that are reproductively incompatible. Subtle but reliable diagnostic characteristics were then identified to distinguish between the two species which would have been considered intraspecific variation without the data from the genetics and interbreeding experiments. These findings suggest that all consignments of biological control agents from allopatric populations should be screened for cryptic species using genetic techniques and that the importation of multiple consignments of the same species for biological control should be conducted with caution.
- Full Text:
- Date Issued: 2016
- Authors: Paterson, Iain D , Mangan, Rose , Downie, Douglas A , Coetzee, Julie A , Hill, Martin P , Burke, Ashley M , Downey, Paul O , Henry, Thomas J , Compton, Stephen G
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424877 , vital:72191 , xlink:href="https://doi.org/10.1002/ece3.2297"
- Description: There are many examples of cryptic species that have been identified through DNA-barcoding or other genetic techniques. There are, however, very few confirmations of cryptic species being reproductively isolated. This study presents one of the few cases of cryptic species that has been confirmed to be reproductively isolated and therefore true species according to the biological species concept. The cryptic species are of special interest because they were discovered within biological control agent populations. Two geographically isolated populations of Eccritotarsus catarinensis (Carvalho) [Hemiptera: Miridae], a biological control agent for the invasive aquatic macrophyte, water hyacinth, Eichhornia crassipes (Mart.) Solms [Pontederiaceae], in South Africa, were sampled from the native range of the species in South America. Morphological characteristics indicated that both populations were the same species according to the current taxonomy, but subsequent DNA analysis and breeding experiments revealed that the two populations are reproductively isolated. Crossbreeding experiments resulted in very few hybrid offspring when individuals were forced to interbreed with individuals of the other population, and no hybrid offspring were recorded when a choice of mate from either population was offered. The data indicate that the two populations are cryptic species that are reproductively incompatible. Subtle but reliable diagnostic characteristics were then identified to distinguish between the two species which would have been considered intraspecific variation without the data from the genetics and interbreeding experiments. These findings suggest that all consignments of biological control agents from allopatric populations should be screened for cryptic species using genetic techniques and that the importation of multiple consignments of the same species for biological control should be conducted with caution.
- Full Text:
- Date Issued: 2016
Effect of water trophic level on the impact of the water hyacinth moth Niphograpta albiguttalis on Eichhornia crassipes
- Canavan, Kim N, Coetzee, Julie A, Hill, Martin P, Paterson, Iain D
- Authors: Canavan, Kim N , Coetzee, Julie A , Hill, Martin P , Paterson, Iain D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423740 , vital:72090 , xlink:href="https://doi.org/10.2989/16085914.2014.893225"
- Description: Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.
- Full Text:
- Date Issued: 2014
- Authors: Canavan, Kim N , Coetzee, Julie A , Hill, Martin P , Paterson, Iain D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423740 , vital:72090 , xlink:href="https://doi.org/10.2989/16085914.2014.893225"
- Description: Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.
- Full Text:
- Date Issued: 2014
The herbivorous arthropods associated with the invasive alien plant, Arundo donax, and the native analogous plant, Phragmites australis, in the Free State Province, South Africa s
- Canavan, Kim N, Paterson, Iain D, Hill, Martin P
- Authors: Canavan, Kim N , Paterson, Iain D , Hill, Martin P
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406155 , vital:70243 , xlink:href="https://hdl.handle.net/10520/EJC155690"
- Description: The Enemy Release Hypothesis (ERH) predicts that when plant species are introduced outside their native range there is a release from natural enemies resulting in the plants becoming problematic invasive alien species (Lake and Leishman 2004; Puliafico et al. 2008). The release from natural enemies may benefit alien plants more than simply reducing herbivory because, according to the Evolution of Increased Competitive Ability (EICA) hypothesis, without pressure from herbivores more resources that were previously allocated to defence can be allocated to reproduction (Blossey and Notzold 1995). Alien invasive plants are therefore expected to have simpler herbivore communities with fewer specialist herbivores (Frenzel and Brandl 2003; Heleno et al. 2008; Heger and Jeschke 2014).
- Full Text:
- Date Issued: 2014
- Authors: Canavan, Kim N , Paterson, Iain D , Hill, Martin P
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406155 , vital:70243 , xlink:href="https://hdl.handle.net/10520/EJC155690"
- Description: The Enemy Release Hypothesis (ERH) predicts that when plant species are introduced outside their native range there is a release from natural enemies resulting in the plants becoming problematic invasive alien species (Lake and Leishman 2004; Puliafico et al. 2008). The release from natural enemies may benefit alien plants more than simply reducing herbivory because, according to the Evolution of Increased Competitive Ability (EICA) hypothesis, without pressure from herbivores more resources that were previously allocated to defence can be allocated to reproduction (Blossey and Notzold 1995). Alien invasive plants are therefore expected to have simpler herbivore communities with fewer specialist herbivores (Frenzel and Brandl 2003; Heleno et al. 2008; Heger and Jeschke 2014).
- Full Text:
- Date Issued: 2014
A promising biological control agent for the invasive alien plant, Pereskia aculeata Miller (Cactaceae), in South Africa
- Paterson, Iain D, Mdodana, Lumka A, Mpekula, Ongezwa, Mabunda, Bheki D, Hill, Martin P
- Authors: Paterson, Iain D , Mdodana, Lumka A , Mpekula, Ongezwa , Mabunda, Bheki D , Hill, Martin P
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416806 , vital:71387 , xlink:href="https://doi.org/10.1080/09583157.2014.919439"
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien plant from Central and South America that has become a problematic environmental weed in South Africa. A potential biological control agent, the stem-wilter, Catorhintha schaffneri Brailovsky and Garcia (Coreidae), was collected in southern Brazil and imported into quarantine in South Africa. Field host range data suggested that C. schaffneri has a host range restricted to P. aculeata. No-choice nymph survival tests were then conducted on 27 test plant species in 9 families. Survival to the adult stage was only recorded on P. aculeata and the closely related Pereskia grandifolia Haw. (Cactaceae). Mortality was significantly higher on P. grandifolia with only 3% of the nymphs reaching the adult stage compared with 74% on P. aculeata indicating that P. aculeata is the primary host plant. P. grandifolia is native in South America and is of no agricultural importance in South Africa so any feeding on P. grandifolia in South Africa would have no negative environmental or economic consequences. In other tests, adult survival on P. aculeata [25.8 days (SE ± 3.74)] was significantly longer than on other test plant species [4.3 days (SE ± 0.36)] further confirming the host specificity of the species. Impact studies conducted in quarantine indicated that C. schaffneri is damaging to P. aculeata, significantly reducing the number of leaves and the shoot lengths of plants, even at relatively low insect densities. C. schaffneri is safe for release in South Africa and is likely to be a damaging and effective agent.
- Full Text:
- Date Issued: 2014
- Authors: Paterson, Iain D , Mdodana, Lumka A , Mpekula, Ongezwa , Mabunda, Bheki D , Hill, Martin P
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416806 , vital:71387 , xlink:href="https://doi.org/10.1080/09583157.2014.919439"
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien plant from Central and South America that has become a problematic environmental weed in South Africa. A potential biological control agent, the stem-wilter, Catorhintha schaffneri Brailovsky and Garcia (Coreidae), was collected in southern Brazil and imported into quarantine in South Africa. Field host range data suggested that C. schaffneri has a host range restricted to P. aculeata. No-choice nymph survival tests were then conducted on 27 test plant species in 9 families. Survival to the adult stage was only recorded on P. aculeata and the closely related Pereskia grandifolia Haw. (Cactaceae). Mortality was significantly higher on P. grandifolia with only 3% of the nymphs reaching the adult stage compared with 74% on P. aculeata indicating that P. aculeata is the primary host plant. P. grandifolia is native in South America and is of no agricultural importance in South Africa so any feeding on P. grandifolia in South Africa would have no negative environmental or economic consequences. In other tests, adult survival on P. aculeata [25.8 days (SE ± 3.74)] was significantly longer than on other test plant species [4.3 days (SE ± 0.36)] further confirming the host specificity of the species. Impact studies conducted in quarantine indicated that C. schaffneri is damaging to P. aculeata, significantly reducing the number of leaves and the shoot lengths of plants, even at relatively low insect densities. C. schaffneri is safe for release in South Africa and is likely to be a damaging and effective agent.
- Full Text:
- Date Issued: 2014
Interactions between two biological control agents and their target weed: a beetle, a bug and a cactus weed
- Mnqeta, Zezethu, Paterson, Iain D
- Authors: Mnqeta, Zezethu , Paterson, Iain D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417475 , vital:71456 , xlink:href="https://doi.org/10.1080/09583157.2019.1631960"
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien shrub introduced into South Africa from Brazil. The leaf-feeding beetle, Phenrica guerini Bechyne (Chrysomelidae), was released as a biological control agent in South Africa in 1991 followed by the stem-wilting bug, Catorhintha schaffneri Brailovsky and Garcia (Coreidae), in 2014. This study investigated the interactions between the two agents under laboratory conditions. Potted plants were exposed to one of four treatments: control (no agents), P. guerini only, C. schaffneri only and both species together. Four densities, ranging from 2 to 12 insects per plant were used. Cathorhitha schaffneri alone at low to moderate densities resulted in the same reduction in number of leaves and shoot length as when combine with P. guerini. At the highest density, C. schaffneri reduced the number of leaves significantly more than any treatment. Mortality of P. guerini was significantly higher than C. schaffneri at the highest density when in combination. The antagonistic interaction between P. guerini and C. schaffneri suggests that these agents should not be released together because this would impact negatively on the overall biocontrol programme against P. aculeata. It is recommended that C. schaffneri should be released at sites where P. guerini is not present. Extrapolation of laboratory-based studies into the field is often challenging, so mass-rearing and releases of P. guerini should continue until there is convincing proof that C. schaffneri alone is more effective than P. guerini in the field.
- Full Text:
- Date Issued: 2019
- Authors: Mnqeta, Zezethu , Paterson, Iain D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417475 , vital:71456 , xlink:href="https://doi.org/10.1080/09583157.2019.1631960"
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien shrub introduced into South Africa from Brazil. The leaf-feeding beetle, Phenrica guerini Bechyne (Chrysomelidae), was released as a biological control agent in South Africa in 1991 followed by the stem-wilting bug, Catorhintha schaffneri Brailovsky and Garcia (Coreidae), in 2014. This study investigated the interactions between the two agents under laboratory conditions. Potted plants were exposed to one of four treatments: control (no agents), P. guerini only, C. schaffneri only and both species together. Four densities, ranging from 2 to 12 insects per plant were used. Cathorhitha schaffneri alone at low to moderate densities resulted in the same reduction in number of leaves and shoot length as when combine with P. guerini. At the highest density, C. schaffneri reduced the number of leaves significantly more than any treatment. Mortality of P. guerini was significantly higher than C. schaffneri at the highest density when in combination. The antagonistic interaction between P. guerini and C. schaffneri suggests that these agents should not be released together because this would impact negatively on the overall biocontrol programme against P. aculeata. It is recommended that C. schaffneri should be released at sites where P. guerini is not present. Extrapolation of laboratory-based studies into the field is often challenging, so mass-rearing and releases of P. guerini should continue until there is convincing proof that C. schaffneri alone is more effective than P. guerini in the field.
- Full Text:
- Date Issued: 2019
Encompassing the relative non-target risks from agents and their alien plant targets in biological control assessments
- Downey, Paul O, Paterson, Iain D
- Authors: Downey, Paul O , Paterson, Iain D
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417940 , vital:71496 , xlink:href="https://doi.org/10.1007/s10526-016-9744-1"
- Description: Criticisms about the safety of biological control of alien plants has resulted in a risk-averse approach, where the risks posed by the agent are paramount and the risks posed by the alien plant are neglected. We argue that the risk associated with non-target damage from agents needs to be assessed relative to that of their target alien plants. A literature review of the non-target risks associated with biological control agents was undertaken in terms of the risk to native species from agents relative to the risk to native species from their alien plant targets. We then developed a framework that compares the consequence with the likelihood of non-target damage for both agents and their targets to provide an overall risk rating. Assessments of the risk of damage from both agents and their target alien plants will enable researchers, managers and policy makers to better assess the risks from biological control.
- Full Text:
- Date Issued: 2016
- Authors: Downey, Paul O , Paterson, Iain D
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417940 , vital:71496 , xlink:href="https://doi.org/10.1007/s10526-016-9744-1"
- Description: Criticisms about the safety of biological control of alien plants has resulted in a risk-averse approach, where the risks posed by the agent are paramount and the risks posed by the alien plant are neglected. We argue that the risk associated with non-target damage from agents needs to be assessed relative to that of their target alien plants. A literature review of the non-target risks associated with biological control agents was undertaken in terms of the risk to native species from agents relative to the risk to native species from their alien plant targets. We then developed a framework that compares the consequence with the likelihood of non-target damage for both agents and their targets to provide an overall risk rating. Assessments of the risk of damage from both agents and their target alien plants will enable researchers, managers and policy makers to better assess the risks from biological control.
- Full Text:
- Date Issued: 2016
With or without you: stem-galling of a tephritid fly reduces the vegetative and reproductive performance of the invasive plant Chromolaena odorata (Asteraceae) both alone and in combination with another agent
- Aigbedion-Atalor, Pascal O, Day, Michael D, Itohan Idemudia, Wilson, David D, Paterson, Iain D
- Authors: Aigbedion-Atalor, Pascal O , Day, Michael D , Itohan Idemudia , Wilson, David D , Paterson, Iain D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418093 , vital:71508 , xlink:href="https://doi.org/10.1007/s10526-018-09917-x"
- Description: With or without another biological control agent, the specialist folivore Pareuchaetes pseudoinsulata, the stem-galling fly Cecidochares connexa reduced the performance of the invasive alien plant, Chromolaena odorata in Ghana. There was a strong significant negative relationship between gall densities of the gall fly and stem height, and the number of stems and flower heads of C. odorata. Pareuchaetes pseudoinsulata had very little impact on any C. odorata parameters. However, at sites where both C. connexa and P. pseudoinsulata occurred simultaneously, the performance of C. odorata was significantly reduced when compared with control plants. Increasing densities of both agents had a strong significant negative correlative effect on C. odorata plant parameters. Cecidochares connexa was recorded in all five regions of the country sampled, while P. pseudoinsulata was recorded in four regions. Densities of both agents declined in the dry season, but galls were persistent throughout the study period. This is the first report of the impact of C. connexa on C. odorata in the West African sub-region since its introduction to Cote d’Ivoire in 2003 and it is clear that the agent has a significant impact on C. odorata in Ghana. Further surveys are required to determine the impact of both biological control agents in other parts of the sub-region where they have established.
- Full Text:
- Date Issued: 2019
- Authors: Aigbedion-Atalor, Pascal O , Day, Michael D , Itohan Idemudia , Wilson, David D , Paterson, Iain D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/418093 , vital:71508 , xlink:href="https://doi.org/10.1007/s10526-018-09917-x"
- Description: With or without another biological control agent, the specialist folivore Pareuchaetes pseudoinsulata, the stem-galling fly Cecidochares connexa reduced the performance of the invasive alien plant, Chromolaena odorata in Ghana. There was a strong significant negative relationship between gall densities of the gall fly and stem height, and the number of stems and flower heads of C. odorata. Pareuchaetes pseudoinsulata had very little impact on any C. odorata parameters. However, at sites where both C. connexa and P. pseudoinsulata occurred simultaneously, the performance of C. odorata was significantly reduced when compared with control plants. Increasing densities of both agents had a strong significant negative correlative effect on C. odorata plant parameters. Cecidochares connexa was recorded in all five regions of the country sampled, while P. pseudoinsulata was recorded in four regions. Densities of both agents declined in the dry season, but galls were persistent throughout the study period. This is the first report of the impact of C. connexa on C. odorata in the West African sub-region since its introduction to Cote d’Ivoire in 2003 and it is clear that the agent has a significant impact on C. odorata in Ghana. Further surveys are required to determine the impact of both biological control agents in other parts of the sub-region where they have established.
- Full Text:
- Date Issued: 2019
Know thy enemy: Investigating genetic contributions from putative parents of invasive Nymphaea mexicana hybrids in South Africa as part of efforts to develop biological control
- Reid, Megan K, Paterson, Iain D, Coetzee, Julie A, Gettys, Lyn A, Hill, Martin P
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
Prioritisation of targets for weed biological control I: a review of existing prioritisation schemes and development of a system for South Africa
- Downey, Paul O, Paterson, Iain D, Canavan, Kim N, Hill, Martin P
- Authors: Downey, Paul O , Paterson, Iain D , Canavan, Kim N , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417763 , vital:71484 , xlink:href="https://doi.org/10.1080/09583157.2021.1918636"
- Description: Biological control is widely utilised for the management of invasive alien plants (IAP). With the ever-increasing number of IAPs, it is important to prioritise targets for biocontrol in order to maximise the use of resources and the chances of success. This paper reviewed 12 previous systems developed to prioritise plant targets for biocontrol. The review underpins the selection of attributes and methodologies for the prioritisation of targets for biocontrol in South Africa. All of the previous systems are purpose-built and context-specific, so a new system is required for the South African setting. Previous prioritisation systems were assessed based on the attributes and methodology adopted. The attributes of previous systems were grouped into three sections, being (1) impact/importance of the target plant, (2) likelihood of achieving success, and (3) investment required. Nineteen attributes from previous systems are included in the new system, while nine were excluded due to a requirement for legislation and/or research, or because they conflicted with objectives of the new system in some way. Two methodological approaches were identified for how systems sourced information, either sourcing information through expert knowledge or the use of available literature and data. This information was then applied through either a quantitative or qualitative scoring method. A quantitative scoring method, with information sourced from available resources, was selected as the most appropriate methodology in the context of the new system for South Africa. This review streamlined the development and testing of the South African Biological Control Target Selection system.
- Full Text:
- Date Issued: 2021
- Authors: Downey, Paul O , Paterson, Iain D , Canavan, Kim N , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417763 , vital:71484 , xlink:href="https://doi.org/10.1080/09583157.2021.1918636"
- Description: Biological control is widely utilised for the management of invasive alien plants (IAP). With the ever-increasing number of IAPs, it is important to prioritise targets for biocontrol in order to maximise the use of resources and the chances of success. This paper reviewed 12 previous systems developed to prioritise plant targets for biocontrol. The review underpins the selection of attributes and methodologies for the prioritisation of targets for biocontrol in South Africa. All of the previous systems are purpose-built and context-specific, so a new system is required for the South African setting. Previous prioritisation systems were assessed based on the attributes and methodology adopted. The attributes of previous systems were grouped into three sections, being (1) impact/importance of the target plant, (2) likelihood of achieving success, and (3) investment required. Nineteen attributes from previous systems are included in the new system, while nine were excluded due to a requirement for legislation and/or research, or because they conflicted with objectives of the new system in some way. Two methodological approaches were identified for how systems sourced information, either sourcing information through expert knowledge or the use of available literature and data. This information was then applied through either a quantitative or qualitative scoring method. A quantitative scoring method, with information sourced from available resources, was selected as the most appropriate methodology in the context of the new system for South Africa. This review streamlined the development and testing of the South African Biological Control Target Selection system.
- Full Text:
- Date Issued: 2021
An introduction to the fourth decadal review of biological control of invasive alien plants in South Africa (2011–2020)
- Paterson, Iain D, den Breeyen, Alana, Martin, Grant D, Olckers, Tamryn
- Authors: Paterson, Iain D , den Breeyen, Alana , Martin, Grant D , Olckers, Tamryn
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/413387 , vital:71031 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a2"
- Description: This special issue is the fourth decadal review of biological control of invasive alien plants (biocontrol of weeds) in South Africa, following those published in 1991, 1999 and 2011. Including this introduction, there are 24 papers covering the weed biocontrol programmes, or important developments in the science and practice, from the period 2011-2020. Seventy-two target weed species are covered, including 25 species on which projects were initiated during the past decade. Developments in regulations, mass-rearing and implementation, and community engagement are also reviewed. An updated catalogue of agents released, rejected and under consideration is presented and reflects the most recent methods of quantifying success in weed biocontrol. Key events over the last decade include the hosting of the XIV International Symposium on Biological Control of Weeds to celebrate 100 years of weed biocontrol in South Africa, as well as the establishment of the Centre for Biological Control at Rhodes University. The science and practice of weed biocontrol has expanded significantly in the past decade, with growth in the number of researchers and practitioners, increased funding, and an increased number of scholarly outputs. Unlike many other countries in the world, South Africa has largely avoided constraints due to restrictive and risk averse legislation and bureaucracy, and has continued to release new biocontrol agents at a similar rate to that in previous years. Much of the success of weed biocontrol in South Africa is due to the sustained and increasing support of the Natural Resource Management Programme of the Department of Forestry, Fisheries and the Environment (Working for Water Programme). However, gaps in funding, where no funds are available for months at a time, are a major concern as the weed biocontrol community loses human capital in these periods, and research programmes suffer significant set-backs. Weed biocontrol is an essential component of South Africa’s strategy to reduce the negative impacts of invasive alien plants and has contributed significantly towards the protection of the country’s ecosystems, indigenous biodiversity, water security, agricultural productivity, and society in general. If the trend of increasing support for weed biocontrol in South Africa continues, we can expect that the benefits for the country at large will increase substantially in the future.
- Full Text:
- Date Issued: 2021
- Authors: Paterson, Iain D , den Breeyen, Alana , Martin, Grant D , Olckers, Tamryn
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/413387 , vital:71031 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a2"
- Description: This special issue is the fourth decadal review of biological control of invasive alien plants (biocontrol of weeds) in South Africa, following those published in 1991, 1999 and 2011. Including this introduction, there are 24 papers covering the weed biocontrol programmes, or important developments in the science and practice, from the period 2011-2020. Seventy-two target weed species are covered, including 25 species on which projects were initiated during the past decade. Developments in regulations, mass-rearing and implementation, and community engagement are also reviewed. An updated catalogue of agents released, rejected and under consideration is presented and reflects the most recent methods of quantifying success in weed biocontrol. Key events over the last decade include the hosting of the XIV International Symposium on Biological Control of Weeds to celebrate 100 years of weed biocontrol in South Africa, as well as the establishment of the Centre for Biological Control at Rhodes University. The science and practice of weed biocontrol has expanded significantly in the past decade, with growth in the number of researchers and practitioners, increased funding, and an increased number of scholarly outputs. Unlike many other countries in the world, South Africa has largely avoided constraints due to restrictive and risk averse legislation and bureaucracy, and has continued to release new biocontrol agents at a similar rate to that in previous years. Much of the success of weed biocontrol in South Africa is due to the sustained and increasing support of the Natural Resource Management Programme of the Department of Forestry, Fisheries and the Environment (Working for Water Programme). However, gaps in funding, where no funds are available for months at a time, are a major concern as the weed biocontrol community loses human capital in these periods, and research programmes suffer significant set-backs. Weed biocontrol is an essential component of South Africa’s strategy to reduce the negative impacts of invasive alien plants and has contributed significantly towards the protection of the country’s ecosystems, indigenous biodiversity, water security, agricultural productivity, and society in general. If the trend of increasing support for weed biocontrol in South Africa continues, we can expect that the benefits for the country at large will increase substantially in the future.
- Full Text:
- Date Issued: 2021
Biological control of cactaceae in South Africa
- Paterson, Iain D, Klein, Hildegard, Muskett, Phillippa C, Griffith, Tamzin C, Mayonde, Samalesu, Mofokeng, Kedibone, Mnqeta, Zezethu, Venter, Nic
- Authors: Paterson, Iain D , Klein, Hildegard , Muskett, Phillippa C , Griffith, Tamzin C , Mayonde, Samalesu , Mofokeng, Kedibone , Mnqeta, Zezethu , Venter, Nic
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/${Handle} , vital:71034 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a4"
- Description: Cactaceae are among the most problematic invasive alien plants in South Africa, posing serious negative consequences to agriculture and natural ecosystems. Fortunately, South Africa has a long and successful history of controlling cactus weeds using biological control (biocontrol). This paper reviews all the biocontrol programmes against invasive alien Cactaceae in South Africa, focusing on the decade since the last review published in 2011, up to, and including 2020. Biocontrol programmes against 16 target weeds are summarised, all of which rely on either the galling mealybug, Hypogeococcus sp. (Pseudococcidae), or various species or intraspecific lineages of cochineal insects (Dactylopius spp., Dactylopiidae) as agents. New agents are being considered for the three target weed species, Opuntia elata Salm-Dyck, Opuntia megapotamica Arechav. and Trichocereus spachianus (Lem.) Riccob., while permission to release a new agent against Cylindropuntia pallida (Rose) F.M. Knuth has recently been granted. The biocontrol agent, Dactylopius opuntiae (Cockrell) ‘stricta’, which has been utilised for the successful control of Opuntia stricta Haw., has shown some promise as an agent against one of the worst cactus weeds in the country, the North Cape/Free State variety of Opuntia engelmannii Salm-Dyck. Post-release monitoring and recent observations of the status of control for the 11 other cactus weeds, all of which have well-established agents, are provided. Taxonomic uncertainties and misidentifications of both target weeds and agents has been a constraint to biocontrol efforts, but this has been partially overcome through the use of genetic techniques. Biocontrol is particularly successful in controlling cactus weeds compared to most other taxonomic groups, and it is likely that past successes can be repeated with new target weeds. Mass-rearing and redistribution of agents are essential to gain the maximum possible benefit from cactus biocontrol agents, and recent increases in mass-rearing outputs have been beneficial.
- Full Text:
- Date Issued: 2021
- Authors: Paterson, Iain D , Klein, Hildegard , Muskett, Phillippa C , Griffith, Tamzin C , Mayonde, Samalesu , Mofokeng, Kedibone , Mnqeta, Zezethu , Venter, Nic
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/${Handle} , vital:71034 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a4"
- Description: Cactaceae are among the most problematic invasive alien plants in South Africa, posing serious negative consequences to agriculture and natural ecosystems. Fortunately, South Africa has a long and successful history of controlling cactus weeds using biological control (biocontrol). This paper reviews all the biocontrol programmes against invasive alien Cactaceae in South Africa, focusing on the decade since the last review published in 2011, up to, and including 2020. Biocontrol programmes against 16 target weeds are summarised, all of which rely on either the galling mealybug, Hypogeococcus sp. (Pseudococcidae), or various species or intraspecific lineages of cochineal insects (Dactylopius spp., Dactylopiidae) as agents. New agents are being considered for the three target weed species, Opuntia elata Salm-Dyck, Opuntia megapotamica Arechav. and Trichocereus spachianus (Lem.) Riccob., while permission to release a new agent against Cylindropuntia pallida (Rose) F.M. Knuth has recently been granted. The biocontrol agent, Dactylopius opuntiae (Cockrell) ‘stricta’, which has been utilised for the successful control of Opuntia stricta Haw., has shown some promise as an agent against one of the worst cactus weeds in the country, the North Cape/Free State variety of Opuntia engelmannii Salm-Dyck. Post-release monitoring and recent observations of the status of control for the 11 other cactus weeds, all of which have well-established agents, are provided. Taxonomic uncertainties and misidentifications of both target weeds and agents has been a constraint to biocontrol efforts, but this has been partially overcome through the use of genetic techniques. Biocontrol is particularly successful in controlling cactus weeds compared to most other taxonomic groups, and it is likely that past successes can be repeated with new target weeds. Mass-rearing and redistribution of agents are essential to gain the maximum possible benefit from cactus biocontrol agents, and recent increases in mass-rearing outputs have been beneficial.
- Full Text:
- Date Issued: 2021